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Abstract—The benefits of full-duplex wireless communica-

tions, specifically with respect to their half-duplex counter-

parts, are now well under examination. As a result, research

into the corresponding scheduling and power allocation

algorithms has thrived. In this paper, we propose a non-

cooperative game theoretic algorithm for power allocation

in full-duplex orthogonal frequency division multiple access

networks. The game is played between user equipment on the

uplink, and the base station on the downlink. The objective

of the game is two-fold: maximizing the signal-to-noise-plus-

interference ratio, while hindering the harmful interferences

resulting from full-duplex operation. We prove that our game

is super-modular. For such a game, a best response algorithm

is capable of attaining a Nash equilibrium. We simulate our

proposal along with a fairness based scheduling algorithm

and show that it improves user equipment throughput and

reduces the waiting delay.

I. INTRODUCTION

With the rapidly increasing user equipment (UE)
throughput requirements [1], and the constant addition
of connected devices, the race for the next big wireless
network breakthrough is at full throttle. Full-duplex (FD)
wireless technologies, made feasible by the introduction
of self-interference cancellation (SIC) techniques, are
quite capable of meeting this booming demand. A full-
duplex orthogonal frequency division multiple access (FD-
OFDMA) network is a wireless system model within
which the base station (BS) operates in FD, and the
UEs remain half-duplex (HD). This keeps the intricacies
of implementing FD communications at the BS. Two
UEs, one transmitting and one receiving, use the same
radio resource, on which the BS transmits and receives
concurrently. The two UEs are said to be paired on the
radio resource. A theoretical doubling of the capacity is
challenged by two repercussions of FD transmissions: self-
interference, and intra-cell co-channel interference.

The first, self-interference, is experienced at the BS
and thus affects uplink UEs in the network. It is the
interference inflicted by the transmitted, and relatively
large, signal on the feeble signal being received on the
same radio resource. This interference is battled using SIC
techniques [2], a set of analog and digital technologies
now well capable of canceling up to 130 dB of signal
interference.

The second, intra-cell co-channel interference, results
from two UEs using the same radio resources within the
same cell. It degrades the performance of downlink UEs
in the network. It is up to the scheduler to deal with
co-channel interference, by selecting pairs of UEs which
exhibit minimum interference. As a result, scheduling

on the uplink and the downlink can no longer be done
independently as in typical HD networks.

Due to the added FD interferences, both scheduling
and power allocation play a vital role in enhancing the
performance of an FD system. Current radio resource
and power allocation schemes, designed for HD networks
as in [3] and [4], benefit from orthogonal downlink and
uplink channels and can thus be optimized independently.
In contrast, in the context of FD wireless communications,
the optimization of scheduling and power allocation has to
be done jointly for the uplink and the downlink because of
the concept of pairing and the generated FD interferences.
Consequently, it is not possible to apply any traditional
HD scheduling or power allocation algorithms to FD
networks in a straightforward manner.

In this paper, we propose a game theoretic approach
to power allocation in FD-OFDMA wireless networks.
We aim to improve UE signal-to-noise-plus-interference
(SINR) ratio, and at the same time, curb the interferences
each UE inflicts on its FD pair. Our game is non-
cooperative by design, it does not necessitate a central
authority capable of enforcing any set of rules aimed at
battling the network interferences. This choice reduces
signaling and processing requirements that otherwise
would be necessary. Nonetheless, if UEs on the uplink and
the downlink take their decisions utterly independently,
the result would be maximum interference. As such, we
implement seperate utilities for the uplink players and
for the BS on the downlink. These utilities take the
interferences each player generates into consideration.

We prove that our game is super-modular. The latter
is known to attain a pure Nash equilibrium via a best
response algorithm. Numerical solutions are provided for
maximizing player utilities. We simulate our proposal
along with a fairness based scheduling algorithm and show
that it improves UE throughput values and reduces the
waiting delay.

The rest of this paper is structured as follows. Section
II discusses the related works. Section III presents the
system model. As power allocation is done for UEs
already scheduled, we need a scheduling algorithm to fully
assess our devised power allocation proposal. To this aim,
section IV puts forward a fair scheduling algorithm we
previously proposed, and used to allocate resources in our
simulations. In section V, we detail our game theoretic
approach to power allocation in FD-OFDMA wireless
networks. Simulations and results are portrayed in section
VI, and finally the paper is concluded in section VII.



II. RELATED WORKS

In this section, we look at the related works in the
state-of-the-art. In the scope of FD communications, it
is important to consider two major pillars: scheduling and
power allocation.

The papers in [5]–[7] are among the earliest in ver-
ifying the validity of FD communications. The authors
in these works proposed FD network models, studied the
limitations of FD communications, and went as far as im-
plementing FD modules in their aim to assess achievable
gains.

More recent works in the state-of-the-art moved towards
scheduling and power allocation. The articles in [8]–
[11] focus on greedy scheduling algorithms coupled with
optimal power allocation mechanisms. The objectives in
these papers are centered around maximizing the network
sum-rate. In some, heuristic algorithms were proposed to
replace the mathematically intractable joint problem.

Probably the closest to our objective in this article are
the papers in [12] and [13]. The authors in [12] introduce
the idea of using game theory in the context of FD
operations. Their article surveys possible applications and
implementations of game theory in relation to scheduling
and power allocation in different FD network scenarios.
In [13], the authors use a game theoretic approach for
resource allocation in FD networks. They couple their
algorithm with a water-filling based power allocation
problem and iterate till a Nash equilibrium is achieved.
They show that their proposal is profitable with respect to
HD networks.

In this paper, we propose a game theoretic approach to
power allocation in FD-OFDMA wireless networks, and
couple it with a scheduler that seeks fairness in resource
allocation between UEs. Our game is non-cooperative. It
seeks to maximize UE SINR, as well as curb network
interferences. We show that our game is super-modular
and hence best response dynamics converge to a Nash
equilibrium. Our system model uses a non-full buffer
traffic model, unlike the vast majority of the state-of-the-
art [8]–[13]. Non-full buffer traffic, like streaming and
video, would make up to 78 % of the global mobile traffic
by the year 2021 [1], highlighting the importance of study-
ing the implications of such traffic models. A dynamic
traffic model additionally allows us to compute packet
level metrics such as the waiting delay. Furthermore,
by using a distributed approach, and by implementing
separate utilities for each set of players, our algorithm
is significantly less complex than the mixed integer non-
linear problems proposed in the articles mentioned above.
This makes it easier to implement in real life scenarios.

III. SYSTEM MODEL

A. Radio Model

We consider a single-cell FD-OFDMA network. This
network is comprised of a full-duplex BS, and half-duplex
UEs. The UEs are virtually divided into two sets: an uplink
UE set, denoted by I and a downlink UE set, denoted by
D. The scheduler will pair between uplink and downlink
UEs on the radio resources. This network is illustrated in
Fig. 1.

Downlink UE Uplink UE
Co-Channel Interference

Self Interference

Figure 1. Network model and interferences

In our work, we assume that the physical layer is
operated using an OFDMA structure. The radio resources
are divided into time-frequency resource blocks (RBs).
In the time domain, an RB contains an integer number
of OFDM symbols. In the frequency domain, an RB
contains adjacent narrow-band subcarriers and experiences
flat fading. Scheduling decisions for downlink and uplink
transmissions are made in every transmission time interval
(TTI). At the beginning of each TTI, K RBs are to be
allocated. The TTI duration is chosen to be smaller than
the channel coherence time. With these assumptions, UE
radio conditions will vary from one RB to another, but
remain constant over a TTI. The modulation and coding
scheme (MCS), that can be assigned to a UE on an
RB, depends on its radio conditions. For performance
evaluation, we consider LTE-like specifications, with an
RB being composed of 12 subcarriers and 7 OFDM
symbols.

An adapted formula is used to calculate the SINR
that takes into consideration the co-channel interference
between a UE pair, and the self-interference cancellation
performed by the BS. The SINR of uplink UE i observed
on RB k, whilst paired with downlink UE j, is expressed
as:

Su

j

(i, k) =
P
ik

h
ik

N0k +

P0k
SIC

, (1)

where on RB k, P
ik

is the power emitted by UE i, h
ik

is the channel gain between uplink UE i and the BS, and
P0k is the power emitted on the downlink by the BS. SIC
denotes the self-interference cancellation performed by the
BS, and thus P0k

SIC

is the residual self-interference. Finally,
N0k is the noise power at the BS on RB k. Furthermore,
the SINR observed by downlink UE j alloted RB k, and
paired with uplink UE i, is expressed as:

Sd

i

(j, k) =
P0khjk
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k

+ P
ik

h
ji,k

, (2)

where h
jk

is the channel gain between downlink UE j
attributed RB k and the BS, and h

ji,k

is the channel gain
between downlink UE j attributed RB k and interfering
UE i, matched on that same RB. As such, P

ik

h
ji,k

is the
co-channel interference affecting downlink UE j. Finally,
Nd

k

is the noise power at downlink UE j allocated RB k.



B. Channel State Information

The state of a wireless channel is determined by the
combined effect of several factors, the most pertinent of
which, are the path loss, the shadowing, and the fast
fading. Knowledge of the channel on a certain wireless
link permits adapting the transmission to the communica-
tion channel. This is essential in achieving reliable com-
munications, and for making efficient resource allocation
decisions.

Full duplex communications add to the complexity of
determining the channel states. In FD systems, additional
information on the channel in between the UEs of a certain
pair is required. In our work, we statistically model the
inter-UE channel as follows:

h
ji,k

= G
t

G
r

L
p

A
s

A
f

(3)

G
t

and G
r

are the antenna gains at the transmitter and
the receiver, respectively. L

p

represents the path loss, or
equivalently the mean attenuation the signal undergoes
in this channel. A

s

and A
f

are two random variables
that respectively represent the shadowing effect, and the
fast fading effect. In this work, the scheduler is assumed
to have perfect channel state information. The impact
of imperfect channel state information on FD network
performances has been investigated in our previous work
in [14].

C. Traffic Model
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Figure 2. Traffic model: UE pair i-j

Our scheduling is queue-aware (Fig. 2). Each UE has a
predefined throughput demand which determines the rate
at which the UE will transmit or receive. A downlink
UE has a queue at the BS, denoted Qd

j

, that it wants to
receive. An uplink UE has a queue of bits it wants to
transmit to the BS, denoted Qu

i

. UE queues are updated
each TTI. They are filled according to a random process
with a number of bits/s equal, on average, to the UE
throughput demand. Once the scheduling is done for a
certain TTI, the scheduler computes the number of bits
each UE can transmit or receive, and the UE queues are
deducted accordingly. Any bits remaining in a UE queue
at the end of a TTI are carried on to the next.

IV. FD PROPORTIONAL FAIR SCHEDULING

In this paper, we utilize a scheduling algorithm we
previously proposed [14]. The aim is to allocate the RBs

in a manner that maximizes the system throughput, while
at the same time insures a certain level of fairness. To
this end, we proposed an FD Proportional Fair algorithm,
which allocates RBs to the pairs of UEs with the highest
sum of priorities. The priority of a UE is a function of
its current radio conditions, represented by the number of
bits a UE can transmit, or receive, on the current RB, and
its historic radio conditions, represented by the number of
bits it has already transmitted. The priority for an uplink
UE i, paired with a downlink UE j on RB k, for example,
is defined as:

⇢
j

(i, k) =
Tu

ijk

T
i

, (4)

where T
i

is the number of bits UE i has transmitted
over a certain time window, and Tu

ijk

is the number of
bits UE i can transmit on RB k while paired with UE
j. The optimization problem for FD Proportional Fair
is presented below, where the objective function is to
maximize the sum of priorities i.e., select the pairs with
the highest priorities. The UE pair-resource assignment
variable z

ijk

, is defined 8 k 2 K, 8 i 2 I, 8 j 2
D, and is equal to one if uplink UE i is paired with
downlink UE j on RB k. It is equal to zero otherwise. The
resource allocation problem for every TTI t is formulated
as follows.
(P t

s

):

Maximize
X
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X

j2D
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subject to
X

i2I
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X

k2K

X

j2D
z
ijk

Tu

ijk

 Du

i

, 8i 2 I, (5c)
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z
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j

, 8j 2 D, (5d)

z
ijk

2 {0, 1}, 8i 2 I, 8j 2 D, 8k 2 K.
(5e)

Similar to before, T d

ijk

is the number of bits UE j can
receive on RB k while paired with UE i. Tu

ijk

and T d

ijk

depend mainly on the radio conditions of the UEs. In
addition, Du

i

is the demand of uplink UE i i.e., the
number of bits in its queue. Likewise, Dd

j

is the demand
of downlink UE j.

Equation (5a) is the objective of our problem, to select
the pairs which have the highest sum of priority values.
According to the constraint (5b), each RB should be
allocated to either one or no pair. Equations (5c) and (5d)
dictate the efficiency of the resource allocation process.
They ensure that no UE will get resources more than it
needs to transmit or receive the entirety of its queue.

V. NON-COOPERATIVE GAME FOR POWER
ALLOCATION

Non-Cooperative game theory models the interactions
between players competing for a common resource. It does
not necessitate any central authority or signaling between
the players. Hence, it is well adapted to power control
modeling in an FD setting. Following the SINR formulas
for uplink (1) and downlink (2) UEs, an increase in the



power of an uplink UE will increase its SINR but at the
same time cause added interference on its paired downlink
UE. Vice-versa, an increase in the transmit power at the
BS, would increase the SINR of the receiving downlink
UE, but cause added interference on the paired uplink UE.
UEs on the uplink and the BS on the downlink, i.e., the
decision makers, are playing for contradicting objectives.
As such, we define a multi-player game G between the BS
(coined player 0) and the |I| uplink UEs. In particular, on
every alloted RB k, uplink UE i will compete with the
BS. The formulation of this non-cooperative game G =⌦
M,S0 ⇥

Q
i

S
i

, U
↵

can be described as follows:
• A finite set of players M = (BS,UE i) paired on the

same RB k. In fact, on each allocated RB k, a two-
players game is engaged between the BS and uplink
UE i matched on RB k.

• The action of a given player is the amount of power
allocated on RB k, the strategy chosen by the BS is
then P 0 = (P01, ..., P0|K|) and the strategy chosen
by any uplink UE i is P

i

= (P
i1, ..., P

i|K|). A
strategy profile P = (P 0,P 1, ...,P |I|) specifies the
strategies of all players.

• For the BS, the space of pure strategies is S0 given
by what follows:

S0 = {P 0 2 R|K|, such as
X

k2K
P0k  pmax

0 and

P0k � pmin

0 , 8k 2 K}

• For each uplink UE i, the space of pure strategies is
S
i

given by what follows:

S
i

= {P
i

2 R|K|, such as
X

k2K
P
ik

 pmax

i

and

P
ik

� pmin

i

, 8k 2 Ki},

where Ki is the set of RBs allocated to UE i and
S = S0 ⇥ S1 ⇥ ...⇥ S|I| is the set of all strategies;

• A set of utility functions U = (U0, Ui2I) that
quantify players’ profit for a given strategy profile.

Note that an uplink player i will not transmit on an RB
it was not allocated.

A. Player Utilities

In this game, each player takes into account its harmful
interfering impact on its adversary. Since the game is
non-cooperative, it is necessary that each player minds
the interferences they generate. If these interferences are
not accounted for in the utilities, each player will seek to
maximize its own gains independently, and consequently,
increase its transmit power. This would generate maximum
interference in the network. Let j(i, k) be a reference to
downlink UE j paired with uplink UE i on RB k as a
result of scheduling. For simplicity, in the remainder of
this paper we use j = j(i, k). The utility of every uplink
UE i is thereafter written as:

U
i

=

X

k2Ki

log(

P
ik

h
ik

N0k +

P0k
SIC

+ P
ik

h
ji,k

). (6)

As for the BS:

U0 =

X

k2K
log(

P0khjk

Nd

k

+ P
ik

h
ji,k

+

P0k
SIC

), (7)

where Ki is the set of RBs scheduled to UE i. The
SINR for the UEs, on the uplink and on the downlink,
are thus inherently included. Additionally, the co-channel
interference, which degrades the performance of downlink
UEs, is now also affecting the utility of uplink UEs.
The self-interference, which degrades the performance of
uplink UEs, is now also affecting the utilities relating
to downlink UEs. As such, we can seek to improve
UE performance, while at the same time account for
the resulting interferences. Via our simulations, we show
that our proposed utilities converge to an efficient Nash
equilibrium which improves UE performance.

B. A Super-modular Game

In a non-cooperative game, a valid solution is one
where all players adhere to a Nash equilibrium, which
is a profile of strategies in which no player will profit
by deviating its strategy unilaterally. A Nash equilibrium
is a static concept that often abstracts away the question
of how it is reached. Thus, the main challenge in non-
cooperative game theory is to devise practical algorithms
to reach such an equilibrium. The simplest example of
such algorithms are repeated best response dynamics:
each player selects the best (locally optimal) response
to other players’ strategies, until convergence. However,
convergence of repeated best response is not guaranteed
in general. For this game, we are in presence of a type
of games called super-modular, where a best response
algorithm permits attaining Nash equilibriums. In what
follows, we introduce a formal definition of super-modular
games and prove that our power allocation game belongs
to the latter class. According to [15], G is super-modular
if for any player � 2M :

1) The strategy space S
�

is a compact sub-lattice of
R|K|;

2) The objective function is super-modular, that is
@

2
U0

@P0@Pi
� 0 and @

2
Ui

@Pi@P0
� 0 8i 2 I, 8P 2 S,

and 8k 2 K.
In [15], [16], proof is given for the following two results
in a super-modular game:

• If each player � either initially uses its lowest or
largest policy in S

�

, then a best response algorithm
converges monotonically to a Nash equilibrium.

• If we start with a feasible policy, then the sequence
of best responses monotonically converges to a Nash
equilibrium: it monotonically increases in all compo-
nents in the case of maximization in a super-modular
game.

Proposition 5.1: Game G
⌦
M,S0 ⇥

Q
i

S
i

, U
↵

is a
super-modular game.
Proof: To prove the super-modularity of the game, we
need to verify the aforementioned conditions. First, the
strategy space S

�

is obviously a compact convex set of
R|K|. Hence, it suffices to verify the super-modularity of
the objective function U

�

of any player � as there are no
constraint policies for G. For any uplink UE i, we have:

@2U
i

@P
ik

@P0k
=

hji,k

SIC

(N0k +

P0k
SIC

+ P
ik

h
ji,k

)

2
� 0, (8)

8i 2 I, 8k 2 K.



And for the BS, we have what follows:

@2U0

@P0k@Pik

=

hji,k

SIC
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+

P0k
SIC

+ P
ik

h
ji,k

)

2
� 0, (9)

8i 2 I, 8k 2 K.

2

C. Computing the Nash Equilibrium

As we proved that we are in presence of a super-
modular game, we implement a best response algorithm
to reach its pure Nash equilibrium. At the convergence of
the best response algorithm, the Nash equilibrium is the
solution of the following two optimization problems:

max

P �

U
�

(P
�

,P��

) (10a)

subject to
X

k2K
P
�k

 pmax

�

, (10b)

P
�k

� pmin

�

, 8k 2 K. (10c)

where pmax

�

(resp. pmin

�

) is the maximal (resp. minimal)
power limit on the uplink for � 2 I and on the downlink
for � = 0. As the optimization problems in (10) are
convex, the Karush-Kuhn-Tucker (KKT) conditions enable
determining a global optimal (i.e., the Nash equilibrium
at convergence) [17]. The KKT conditions associated with
P
�k

, 8k 2 K gives what follows:
1

P ⇤
�k

� 1

b
�k

+ P ⇤
�k

= �
�

, 8k 2 K (11a)
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�
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k2K
P ⇤
�k

) = 0 (11b)
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�

, 8k 2 K (11c)
�
�

� 0. (11d)

where �
�

is the KKT multiplier associated with the
constraint (10b), and

b
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8
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N0k+
P0k
SIC

hji,k
, � = i 2 I

SIC ⇥ (Nd

k
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h
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), � = 0

(12)

We deduce from (11a) that �
�

cannot be null. As such, all
P ⇤
�k

are the solution of a second order equation that gives

P ⇤
�k

=

b�k·(
q

1+ 4
b�k��

�1)

2 , where �
�

can be computed
numerically owing to

P
k2K P ⇤

�k

= pmax

�

. Finally, in
respect with constraint (11c), we have what follows for
the BS:

P ⇤
0k = max(pmin

0 ,
SIC ⇥ (Nd
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)
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·
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(13)
and for any uplink UE i:

P ⇤
ik

= max(pmin

i

,
N0k +

P0k
SIC

2h
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·(
vuut1 +
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�1)).

(14)
Algorithm 1 has the scheduling and power allocation
algorithm. The matrix pu has the transmit power of every

uplink UE on every RB it was allocated. pd has the BS
transmit power on all the RBs. Typically, the algorithm
will reach a Nash equilibrium for the power allocation
step in 3 to 4 iterations.

Algorithm 1 Scheduling and Power Allocation Algorithm
1: Requires: Maximum tolerance ✏ � 0.
2: Input: UE radio conditions, channel states, initial

power settings pu0 and pd0 .
3: For TTI t=1....T
4: Step 1: Scheduling

5: RBs are allocated following (P t

s

) in (5)
6: Step 2: Power Allocation

7: Repeat:

8: Solve (10) in the uplink 8 i 2 I.
9: Update pu

n

10: Solve (10) in the downlink for the BS
11: Update pd

n

12: �d=
��pd

n

� pd
n�1

��, �u=
��pu

n

� pu
n�1

��
13: n  n+ 1

14: Until �d  ✏ and �u  ✏
15: End For

VI. SIMULATIONS AND RESULTS

A. Simulation Parameters

We seek via our different simulation scenarios to ad-
dress the gains attributed to our game theoretic proposal.
The simulation parameters we used are presented in Table
I.

Table I
SIMULATION PARAMETERS

Parameter Value

Cell Specifications Single-Cell, 120 m Radius
Number of RBs 60
Maximum BS/UE Transmit Power 24 dbm
SIC Value 1011

Number of UEs 20 UEs: 10 downlink, 10 uplink
UE Distribution Uniform
Demand Throughput 4 Mbps
Fast Fading Rayleigh. �=1
Shadowing Normal law. µ=0 dB �2=10 dB
Path Loss Model Extended Hata Path Loss Model

The channel gain takes into account the path loss,
the shadowing and the fast fading effects. The path loss
is calculated using the extended Hata path loss model
[18]. The shadowing is modeled by a log-normal random
variable A

s

= 10

( ⇠
10 ), where ⇠ is a normal distributed

random variable with zero mean and standard deviation
equal to 10. The fast fading is modeled by an exponential
random variable A

f

with unit parameter. This model is
used for urban zones and it takes into account the effects
of diffraction, reflection and scattering caused by city
structures.

B. Power Consumption

In this section, we observe how our proposal allocates
power on the RBs. Figure 3 has a cumulative distributive
frequency (CDF) plot with results. On the downlink,
the power on the RBs varies between 4 and 8 dBm,
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Figure 3. Power consumption per RB

and on the uplink it varies between 4 and 24 dBm.
This variation comes as a result of the proposed player
utilities. If both uplink and downlink power levels were
to be simultaneously increased, the generated interferences
would also be maximized.

C. Effect on UE Throughput

We study the effect of our power allocation algorithm
on the performance of the UEs in the network. We
simulate our scheduling algorithm (FD Proportional Fair)
using first our proposed power allocation algorithm, and
second using equal maximum power allocation. The latter
indicates that for uplink UEs, each UE will transmit with
all 24 dBm available power divided equally on the RBs
it got. On the downlink, the maximum transmit power
is divided equally on all the RBs. For reference, an HD
Proportional Fair algorithm and the greedy FD Max Sum-
Rate algorithm presented by the authors in [8], are also
simulated. Equal maximum power allocation is used for
HD Proportional Fair as well as FD Max Sum-Rate. Figure
4 has a CDF plot with the results.
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Figure 4. Effect of power allocation on UE throughput

The gains that FD operation brings is clear when
comparing the HD plot with the corresponding FD plots.
The plot for HD Proportional Fair lags behind the three

FD plots, indicating that FD UEs almost always perform
better. Furthermore, few HD UEs crossed the 2 Mbps
mark (less than 20%) even though all UEs are in excellent
radio conditions (HD scenario exhibits no interferences).
When compared with our proposal, the worst performing
FD UE, with about 1.2 Mbps throughput, faired better
than more than half of the HD UEs. Comparing between
our proposal and equal maximum power allocation, our
power allocation algorithm results in a higher maximum
throughput, close to 4 Mbps, and a higher minimum as
well. Our utilities allow our algorithm to count for the
intra-cell co-channel interferences. In the case of equal
maximum power allocation, it is expected that the effects
of FD interferences would be maximized. When the power
is increased on the downlink, uplink UE performance
degrades and vice-versa. Furthermore, in comparison with
the Max Sum-Rate algorithm, our proposal also relatively
performs better. There is nonetheless a visible contrast in
scheduling objectives. FD Max Sum-Rate seeks to maxi-
mize the total network throughput, while our scheduling
proposal aims to allocate resources fairly between the
UEs. Hence, the lowest recorded throughput value for our
proposed algorithm is close to 1.2 Mbps, compared to
0 Mbps for the FD Max Sum-Rate algorithm. Maximum
power allocation on all the RBs pushes the greedy algo-
rithm to the extremities. The performance of UEs with
good radio conditions will get better, while interference
on UEs with bad radio conditions is increased. As a
result, HD UEs outperformed their FD Max Sum-Rate
counterparts in around 10% of the simulated cases.

D. Effect on UE Waiting Delay

In this section, we study the impact of our power
allocation algorithm on the transmission delay experienced
by the UEs in the network. Our non-full buffer traffic
model allows us to compute packet level metrics such
as the waiting delay. The average UE waiting delay is
calculated using Little’s formula as the average queue
length divided by the packet arrival rate. Figure 5 has
a box plot with the average UE waiting delay in ms for
each of the cases simulated in the previous section: FD
Proportional Fair with game theoretic power allocation,
FD Proportional Fair with equal maximum power alloca-
tion, HD Proportional Fair, and FD Max Sum-Rate with
maximum power allocation.

HD UEs experience the worst delay, with a median
average delay of around 4.15 ms. The greedy Max-Sum
Rate algorithm UEs experience the least amount of delay
with a minimum average equal to 2.85 ms and a maximum
close to 3.2 ms. Our scheduling algorithm, coupled with
a game theoretic approach to power allocation comes
close in second. It achieves a median close to 3.05 ms
with a maximum average delay of 3.15 ms. This is
an impressive result considering the scheduling objective
for this algorithm is fairness oriented, as compared to
the greedy Max Sum-Rate algorithm. Finally, simulating
our scheduling algorithm with equal maximum power
allocation produced mixed results. While the algorithm
still outperforms HD operation, the performance is still
clearly degraded in comparison with game theoretic power
allocation.
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Figure 5. Effect of power allocation on UE waiting delay

E. Case of Low SIC

We aim to study the performance of our power al-
location algorithm in the case of low self-interference
cancellation. Following the SINR formulas, a decrease in
the network ability to cancel self-interference degrades the
performance of uplink UEs. We lower the SIC factor from
10

11 to 10

9, and repeat the simulations.
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Figure 6. Effect of low SIC on UE performance

Figure 6 has a box plot of the throughput attained by the
UEs as a result of scheduling using our proposed power al-
locations algorithm, vs. using fixed equal maximum power
allocation. Power allocation with fixed maximum powers
should be able to benefit uplink UEs in this situation. More
power translates into higher SINR values. Nonetheless,
our algorithm still outperforms it. Our algorithm shows a
higher maximum, close to 4 Mbps, and a higher minimum
as well, close to 0.5 Mbps. Our algorithm can better
adapt to the decrease in SIC capabilities. Nonetheless,
the performance of the algorithm with maximum power
is closer to our proposal in this case than in the normal
case. This is because the best response to lower SIC
values is higher transmit powers on the uplink, something
inherently present in the maximum power simulation.

VII. CONCLUSION

In this paper, we proposed a game theoretic approach to
power allocation in FD-OFDMA wireless networks. Our
game is non-cooperative. As such, and in order to take

FD interferences into consideration, we propose separate
utilities for the uplink and the downlink. The utilities seek
to improve UE radio conditions, and at the same time, curb
the interferences that each UE inflicts on its FD pair. We
show that our game is super-modular, and we implement
a best response algorithm to reach a Nash equilibrium.
Finally, we address the performance gains of our proposed
power allocation algorithm: our approach improves UE
throughput and reduces UE waiting delays.
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