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Abstract— While helping better utilize the system’s re-
sources, full-duplex technologies have the ability to double
the efficiency of wireless networks. However, these networks
would suffer from added types of interferences, namely self-
interference and intra-cell co-channel interference. As such,
efficiently addressing scheduling and power allocation in
full-duplex networks is vital. In this article, we formulate
a queue-aware, fair scheduling and power allocation prob-
lem for full duplex orthogonal frequency division multiple
access networks. Due to its intractability, we decompose
this problem into two: a scheduling problem and a power
allocation problem. We compare our proposal to the state-
of-the-art, and show that it improves fairness among the
user equipment at no cost in the system’s performance.
Simulation results show a significant increase in throughput
values for full-duplex users in comparison with their half-
duplex counterparts, and that power allocation saves on
expenditure while improving user performance.

I. INTRODUCTION

Already exceeding a staggering 7.2 exabytes per month,
mobile data traffic is expected to grow seven folds by the
year 2021 [1]. Currently implemented half-duplex (HD)
wireless communication systems could soon fail to meet
this catapulting demand. These systems allocate a radio
resource exclusively to one user equipment (UE) either
for transmission or reception. This renders the network
bandwidth inefficiently used. However, the development of
self-interference cancellation (SIC) technologies have led
to the introduction of full-duplex (FD) communications as
a possible answer to an ever-growing mobile industry. We
base our work on an FD orthogonal frequency division
multiple access (FD-OFDMA) system which exhibits a
full-duplex base station (BS) and half-duplex UEs. This
reduces interference problems, and keeps most of the
complexity of implementing FD at the base station. FD-
OFDMA systems allocate the same resource block to two
different UEs: one on the uplink and one on the downlink.
The two UEs form a pair associated with the allocated
resource block, on which the BS transmits and receives
concurrently. This promises a doubling of the network’s
capacity, despite a hurdle of interference problems which
threaten to diminish the gains.

The first of these interference problems is self-
interference. Self-interference is the interference imposed
by the transmitted signal from a full-duplex device, typ-
ically multiple times larger, on the received signal. This
phenomenon leads to the masking of the received signal
at the base station, and consequently, to a degradation
in performance of uplink UEs. The introduction of self-

interference cancellation techniques in recent years altered
the vision on FD communications which were once per-
ceived impossible. SIC is done via a set of advanced
analog and digital processes as described in [2]. Our
work builds on the presence of these technologies, as the
efficiency of an FD system is tied closely to the potency
of the SIC technology in place.

Secondly, FD-OFDMA systems suffer from intra-cell
co-channel interference. The signal from an uplink UE,
transmitting with relatively high power, will interfere on
the signal being received by a downlink UE. This causes
degradation in the performance of these UEs. As a result,
scheduling in the uplink and the downlink can no longer
be done independently as in half-duplex networks. The
scheduler must ensure that the co-channel interference
between the UEs of a selected pair does not hinder their
performance. This mainly depends on the uplink UE’s
transmit power, as well as on the channel gain between
the pair of UEs.

In our work, we formulate a queue-aware schedul-
ing problem that allocates resources to pairs of uplink-
downlink UEs, in a manner that maximizes UE SINR and
enforces fairness. Due to the intractability of optimally
addressing scheduling and power allocation jointly, we
decompose the problem and tackle them separately.

We prove that our proposed power allocation proposal
can be transformed into a convex problem. Afterwards,
we demonstrate the ability of our algorithm to save on
power consumption and improve UE performance.

The rest of the paper is structured as follows. Section II
discusses the related works and our contributions. Section
IIT presents the system model. Section IV details our
optimal problem for scheduling and power allocation
in FD-OFDMA networks. A framework for solving this
problem is presented in section V. Simulation results are
presented and discussed in section VI. Finally, section VII
concludes the paper.

II. RELATED WORK

In this section, we examine the main state-of-the-art
publications in the domain. The authors of article [3]
propose a joint subcarrier and power allocation algo-
rithm which seeks to maximize the sum-rate in FD-
OFDMA networks. They implement an iterative water
filling power allocation algorithm. The scheduling prob-
lem is formulated as a combinatorial problem of high-
complexity with the objective of maximizing the sum-



rate. The authors thus introduce a heuristic solution with
lower complexity. In [4], a joint UE selection and rate
allocation algorithm is proposed. It is formulated as a
nonlinear non-convex problem with mixed discrete and
continuous optimization. Because of the complexity of this
problem, a suboptimal method is introduced. The authors
in [5] propose an optimization problem with the purpose
of allocating resources in what is described as a three-node
system. The scenario implemented exhibits a full-duplex
BS and half-duplex UEs. They devise a distributed auction
algorithm with the purpose of increasing the system’s
spectral efficiency. In [6], a problem for resource and
power allocation in FD-OFDMA networks is formulated.
The goal is to maximize the sum-rate. The problem is non-
convex with exponential complexity. As such, the authors
propose a heuristic alternative. Finally, in [7], the authors
seek to jointly distribute resources and allocate power
to UE pairs in a manner that maximizes the sum-rate.
They formulate the problem as a non-convex optimization
problem, and proceed to introduce a user-pairing and
subchannel allocation suboptimal heuristic algorithm.

In this paper, we seek to optimally schedule resources
and allocate power on the resource blocks, in a manner
that maximizes UE SINR, and at the same time enforces
fairness. Our scheduling is queue-aware and the arrivals
are dynamic. These objectives give prevalence to multiple
questions: How can we optimally account for queue-
awareness? How can we jointly maximize UE SINR whilst
ensuring fairness? Two seemingly contradicting goals.
Our formulation answers these questions and puts us
apart from the majority of the state-of-the-art [3]-[7],
which address neither. Furthermore, our power allocation
problem is tractable, as we demonstrate later on. It bears
significantly less complexity than the non-convex opti-
mization algorithms in the articles mentioned above. As
non full-buffer traffic, like streaming and video, would
make up to 78 % of the global mobile traffic by the year
2021 [1], our queue-aware approach is significantly more
realistic than the full-buffer traffic models considered in
the state-of-the-art.

III. SYSTEM MODEL
A. Radio Model

We consider a single-cell FD-OFDMA system. This
system exhibits a full-duplex BS and half-duplex UEs.
The UEs are virtually divided into two sets: an uplink UE
set, denoted by U and a downlink UE set, denoted by
D. The scheduler will pair between uplink and downlink
UEs on the resource blocks k of the set K. This system is
illustrated in Fig. 1.

In our work, we assume that the physical layer is
operated using an OFDMA structure. The radio resource
is divided into time-frequency resource blocks. In the time
domain, a resource block (RB) contains an integer number
of OFDM symbols. In the frequency domain, a resource
block contains adjacent narrow-band subcarriers and ex-
periences flat fading. Scheduling decisions for downlink
and uplink transmissions are made in every Transmission
Time Interval (TTI) ¢. At the beginning of each TTI, K
resource blocks are to be allocated. The TTI duration is
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Figure 1. System model and interferences

chosen to be smaller than the channel coherence time.
With these assumptions, UE radio conditions will vary
from one resource block to another, but remain constant
over a TTI. The modulation and coding scheme (MCS),
that can be assigned to a UE on a resource block, depends
on its radio conditions. For performance evaluation, we
consider in what follows LTE like specifications, with a
resource block being composed of 12 subcarriers and 7
OFDM symbols [8].

An adapted formula is used to calculate the SINR

that takes into consideration the co-channel interference
between a UE pair, and the self-interference cancellation
performed by the BS. Let P, and Pﬁ 1. denote the transmit
power of the ith uplink user, and the transmit power of
the BS serving downlink user j, respectively on the kth
resource block. We denote by £, the channel gain from
the ith uphnk user to the BS, on the kth resource block.
Similarly, h ‘. is the channel gain from the BS to the jth
downlink user on the kth resource block. Furthermore,
hji.i; denotes the channel gain between the ith uplink user,
and jth downlink user, on the kth resource block. Thus,
P} [hji |? is the co-channel interference on downlink UE
j caused by uplink UE i, using the same resource block
k. The self-interference cancellation level at the BS is
denoted Cgy. In particular, Lk represents the residual
self-interference power at the BS, on the kth resource
block. Finally, Noj; and Nj;; denote the noise powers
at the BS and at the jth downlink user, respectively on
the kth resource block. Equations (1) and (2) denote the
formulas for SINR calculation for uplink and downlink
UEs respectively. For an uplink UE,
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where S7 (i, k) is the SINR of UE 4 on resource block
k, while using the same resources as UE j. Similarly,
S¢(j,k) is the SINR of UE j on resource block k, while
being paired with UE i.

B. Traffic Model

Our scheduling is queue-aware (Fig.2). Each UE has a
predefined throughput demand which determines the rate
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Figure 2. Traffic model and UE queues

at which the UE will transmit or receive. A downlink UE
has a queue at the BS, denoted Q;i. An uplink UE has
a queue of bits it wants to transmit to the BS, denoted
Q3. UE queues are updated each TTIL. They are filled
according to a random process with a number of bits/s
equal, on average, to the UE throughput demand. Once the
scheduling is done for a certain TTI, the BS computes the
number of bits each UE can transmit or receive, and the
UE queues are deducted accordingly. Any bits remaining
in a UE queue at the end of a TTI are carried on to the
next. In our work, the BS has complete information on the
radio channels, and can thus estimate the number of bits
a UE can transmit, or receive, depending on its SINR.

IV. FORMULATION OF THE OPTIMAL SCHEDULING
AND POWER ALLOCATION PROBLEM

We propose a queue-aware scheduling and power al-
location optimal problem for FD-OFDMA networks. Our
aim is to maximize the UE SINR values, while at the same
time enforcing fairness among the UEs. Solving such a
problem requires information on the UE radio conditions,
their queue statuses, as well as an innate definition of
fairness. As such, we define a UE pair priority and
formulate the problem with the objective of maximizing
the sum of these priorities.

The priority of a UE pair is defined as a function of
its current radio conditions, represented by the sum of
the log of the pair’s UE SINR values, and its historic
radio conditions, represented by the number of bits these
UEs have already transmitted. The priority for an uplink-
downlink UE pair ¢-j, on resource block k, is defined as:

_ log(S3(i,k)) +1og(SY(7, k)

Pijk = Tz T Tj )

where T is the number of bits UE ¢ has transmitted
in a certain time window. Consequently, the fairness is
relative to the UE SINR. The priority of a certain pair,
and with it the priority of the UEs which have transmitted
for a prolonged period of time will drop. The sum of
logarithmic functions of the SINR enforces fairness as
illustrated in [9]. It dictates that no UE will attain an SINR
equal to zero. Furthermore, the UE queue is finite, and
the UE priorities are dependent on the transmitted bits,
as such, they are periodically reset. This guarantees that
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no UE priority will be zero, as long as it can, and has,
bits to transmit. The UE pair-resource scheduling variable
Zijk, is defined V k € K, Vi € U,V j € D, and is
equal to one if uplink UE ¢ is paired with downlink UE
j on resource block k. It is equal to zero otherwise. In
this optimization problem, the variables are the UE pair-
resource block scheduling variables, and the uplink and
downlink powers. We formulate the problem for TTI ¢ as
follows:

(PH) :

Maxidmize Z Z Z Zijk-Pijk- (48.)

zigk:s PPl ek ietd jeD

subject to > Yz < 1, Vk € K, (4b)
ieU jeD
SN zpTly <D, Vield,  (do)
keK jeD
SO wpT, < DY, VieD,  (4d)
keK ieUd
YD Pl < Prass (de)
keK jeD
> P4y <Py, Viel, (4f)
keK
Pl > PY. Viel, (4g)
de,k’ 2 Pgm'?m vk € D7 (4h)

zijk € {0,1}, Vi e U,Vj € D,Vk € K.
(41)

1,
on resource block &, while paired with downlink UE j.
Similarly, Tgk is the number of bits UE j can receive
on resource block k, while paired with UE 1. T;}k and
Tgk depend mainly on the radio conditions of the UEs.
In addition, D} is the demand of UE i i.e., the number
of bits in its queue. Likewise, D;l is the demand of UE j.

Equation (4a) is the objective of our problem, to select
the pairs which have the highest priorities. According to
(4b), each resource block should be allocated to either one
or no pair. Equations (4¢) and (4d) help incorporate queue-
awareness. By estimating the number of bits a UE can
transmit (T;;. i) or receive (7T, i‘j- ) on a resource block, these
constraints ensure that a UE will get a certain number of
resources, if and only if, it is going to use them in their
entirety.

Equation (4e) indicates the power budget at the base
station. Equation (4f) limits the transmit power of a UE
to a maximum value. Due to the necessity of giving
minimum power values on the resource blocks, we add the
constraints (4g) and (4h). P*, and P¢. are constants
and equal to 0.001 W and 0.005 W, respectively.

The scheduling problem presented is combinatorial in
nature. Addressing it together with power allocation in an
optimal manner is challenging, especially as the combined
problem is of type mixed integer non-linear programming
(MINLP). It will become intractable as the number of
UEs and resource blocks increase. As such, we solve
this problem according to the framework presented in the
following section.

T3y, is the number of bits uplink UE ¢ can transmit



V. PROBLEM SOLVING FRAMEWORK

The optimal problem is decomposed and solved ac-
cording to the following framework (fig. 3). Knowing
the UE radio conditions and their queue statuses, we
obtain an optimal resource allocation matrix z;;, with
fixed uplink and downlink power values. Afterwards, the
power allocation problem takes this matrix as input, and
computes the powers on the uplink and the downlink. The
UE SINR values are recomputed using the optimal power
values, and the number of bits each UE can transmit, or
receive, is calculated. The UE queues )} and Q? are then
appropriately deducted depending on the resources each
UE was allocated. At the beginning of the next TTI, new
arrivals are added to the UE queues, and the UE demands
D} and D;.i are updated.
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Figure 3. Scheduling and power allocation framework

A. Scheduling Problem

According to the proposed framework, and with fixed
powers on the resource blocks, the optimization variables
are now the values of z;;,. The scheduling problem is
written as follows:

(P')s:

Maximizeg E gzijk.pijk.
Ziq
Wk eK iel jeD
(5)

Subject to (4b) to (4d)

The values of z;;, are binary. The constraints are lin-
ear. This problem is as such of type integer linear
programming. The number of constraints and variables
are important factors when estimating if a problem is
tractable. Generally, ILP problems are solved using a
linear-programming based branch-and-bound approach.
The idea of this approach to look for an integer solution
by branching and bounding on the decision variables
provided by the LP relaxations. Thus, the number of
integer variables determines the size of the search tree
and influences the running time of the algorithm.

B. Power Allocation Problem and Convex Transformation

Power allocation is performed after the resources are
scheduled. The optimization variables are now the power
levels on the resource blocks dek and PY,. The power

allocation problem is written as follows:
(P')pa:
z’,",k
Maximize —=
i 53
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Subject to (4e) to (4h)

The expression of the SINR has the following form:
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where a, b, and c are constants. z and y are the optimiza-
tion variables that represent the powers. Maximizing a
concave function, subject to linear and convex constraints,
leads to a convex problem. We perform a logarithmic
change to the variables and the constants such that & =
log x. This changes equation (7) into

log(

log(e® 1) —log(ei’—i-ngré) = i‘—i—d—log(e?’-l-e“é), ®)

T + a is a linear function, therefore it is a concave
function [10]. The function log > e” is convex, therefore
—log Y e” is concave. Thus, the expression in (8) is
concave. As the objective function is concave, we still
need to proof that the constraints are convex. These
constraints can be written in the form of:

Y z<d )

With the change of variables we did, it becomes:

Zejfdg().

>~ €” is a convex function and d is a constant, this means
that (10) is convex. In conclusion, the power allocation
problem can be transformed into a non-linear convex
problem, and can be solved efficiently by standard convex
program solvers such as CVX [11]

(10)

VI. SIMULATION AND RESULTS
A. Simulation Parameters

The simulation parameters we used are presented in
table I. The channel gain takes into account the path loss,
the shadowing, and fast fading.

Table 1
SIMULATION PARAMETERS

Value

Cell Specifications Single-Cell, 120 m Radius
Number of RBs 20

Parameter

BS Transmit Power 24 dbm
Maximum UE Transmit Power 24 dbm

SIC Value 10" or 108
Number of UEs 5DL, 5UL
UE Distribution Uniform
Demand Throughput 2 Mbps

Fast Fading
Shadowing

Path Loss Model
Simulation runs

Rayleigh. o=1

Normal law. u=0 02=10
Extended Hata Path Loss Model
500, 10 TTI each




B. Gain In Throughput and Fairness

We seek to validate the possible gain achievable from
FD. The self-interference cancellation value is set at the
relatively high value of 10'!. We plot the cumulative
distribution function (CDF) for the throughput attained
by the UEs for our FD priority based algorithm, and for
HD scheduling. Additionally, we augment and adapt the
sum-rate maximization algorithm proposed in [3] to our
queue-aware model, and compare it to our proposal.
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Figure 4. UE Throughput: Priority Based FD, HD, and Max Sum-Rate

The graph in Fig. 4 shows massive improvement in per-
formance for FD UEs. The minimum attained throughput
by an HD UE is 0 Mbps, compared to 1.2 Mbps by our
FD algorithm. On average FD Priority Based UEs attained
1 Mbps more throughput than their HD counterparts. The
gain is almost double. In comparison to the sum-rate
maximization algorithm we simulated, our FD algorithm
has less UEs attaining the maximum throughput value of
2 Mbps. However, it has no UEs attaining values lower
than 1.2 Mbps, whilst the lowest throughput for the sum-
rate algorithm is 0 Mbps. Our algorithm focuses more
on the aspect of UE fairness, giving more resources to
UEs which have transmitted less often than others. We
use Jain’s fairness index [12] to evaluate the equity among
the UEs. Our proposed algorithm has a Jain index value
equal to 0.9803. The greedy algorithm, proposed in [3],
has a fairness index value equal to 0.75. The fairness of
the latter will decrease exponentially as the load increases.

Furthermore, we seek to study the effect this added
fairness has on the overall network performance. Figure 5
has the boxplots for network throughputs attained by our
algorithm, and by the sum-rate maximization algorithm
throughout the simulations.

The highest network throughput attained by the sum-rate
algorithm is around 38 Mbps, compared to 38.4 Mbps
for our algorithm. The latter has 36.2 Mbps as the
lowest attained network throughput, compared to around
35.6 Mbps for the sum-rate algorithm. In general, our al-
gorithm slightly improves the overall network throughput,
and the added fairness comes at no cost in the overall
system performance. This is mainly due to the effects
of multi-user diversity and dynamic traffic. With UEs
having finite queues and limited bits to transmit, UEs with
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Figure 5. Network throughput: Max-Sum Rate and Priority Based FD

high SINR values will not hog the resources and transmit
indefinitely. If the UEs were to have full buffer traffic, the
sum-rate algorithm would always produce higher network
throughput. Nonetheless, this is not the case neither in our
model, nor in real wireless networks.

C. Power Expenditure

In this subsection, we seek to compare the difference in
power expenditure by our algorithm, in the presence and
absence of power allocation. The SIC value is 10'!. For
the case where the powers are not optimally allocated, the
transmit power of a UE on a resource block is equal to
the maximum transmit power, divided by the number of
resource blocks it was allocated during that TTI.
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Figure 6. Power expenditure per resource block, with and without power
allocation

Figure 6 shows the CDF plot for the transmit power, per
resource block, of both uplink and downlink FD Priority
Based scheduled UEs, with and without power allocation.
The CDF shows significantly lower power expenditure on
the downlink for the algorithm, when power allocation is
performed. None the uplink UEs with power allocation
transmitted on powers higher than 18 dBm per RB,
compared to 18% of their counterparts crossing that mark.
As for uplink UEs, the advantage is also there for the
UEs with power allocation, albeit with less significance.



As resource allocation on the uplink and downlink in FD-
OFDMA networks is intricate and correlated, there will
always be a trade off between the gains on the uplink and
on the downlink.

D. Effect of Low Self-Interference Cancellation

We want to study the performance of our algorithm in
case of relatively low SIC. The SIC value is lowered to
108. Following the uplink UE SINR equation in (1), the
value of the SIC affects the performance of uplink UEs.
We use bag plots [13] to asses the SINR values attained
by uplink UEs as a function of their transmission power
on the resource blocks. Figures 7 and 8 show the results,
with and without power allocation, respectively.
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Figure 7. UE SINR as a function of transmit power per resource block,
in the presence of power allocation and under the effect of low SIC

The inner bag (dark blue) in fig. 7 is thinner than
that corresponding to the algorithm runs without power
allocation (fig. 8). This implies that the power spread is
smaller in the case of power allocation. Furthermore, the
SINR spread favors the case of the latter as well. Power
allocation helped increase the SINR values of the worst
performing UEs. The lowest UE SINR value in the case of
power allocation is -15 dB compared to -20 dB for the case
without. Finally, the bag in fig. 7 slopes upwards. This
means that the SINR increases as the power expenditure
increases. This is not true for the case without power
allocation, where sometimes the expenditure of uplink
power does not necessarily translate into better SINR.

VII. CONCLUSION

In this article, we present our optimal FD Priority
Based algorithm for scheduling and power allocation in
FD-OFDMA networks. We seek to fairly schedule the
resources while appropriately allocating power to the UEs.
Our algorithm is queue-aware and takes dynamic traffic ar-
rivals into account. Simulation results show almost double
the values for throughput in FD systems, compared to HD.
Additionally, our algorithm enforces fairness among the
UEs without cost to the system performance. Finally, op-
timally allocating power on the resource blocks decreased
expenditure, and helped improve radio conditions for the
worst fairing UEs.
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Figure 8. UE SINR as a function of transmit power per resource block,
in the absence of power allocation and under the effect of low SIC
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