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Abstract—Computational offloading is a pivotal solution to
several Internet of Things (IoT) issues as it helps subdue the
constrained nature of IoT devices. By harnessing the large capacity
at the Edge, IoT devices with limited battery and storage can del-
egate certain tasks, especially those related to Machine Learning.
Because of their restricted capacity, such devices can only store a
limited amount of data as a training set for their learning, leading
to a faulty prediction with high error rate. To tackle that issue,
IoT devices can federate the learning process with other devices
while the Edge server acts as an aggregator. However, selecting
the appropriate Edge is a significant challenge. In fact, although
learning collectively can reduce the prediction error, it also brings
about a communication cost that depends on the selected Edge.
Therefore, in this paper, we propose a Non-Cooperative game
where devices autonomously and efficiently select an Edge server
in order to reduce both their learning error and communication
cost.

Index Terms—Edge Computing, Non-cooperative game theory,
Federated learning, Linear regression, IoT.

I. INTRODUCTION

With the dawn of the Internet of Things (IoT), massive data
is collected by constrained devices that cannot be put to use to
leverage Machine Learning (ML) because of IoT devices’ lim-
ited resources. Hence, such devices usually transmit the local
data they collected to Edge servers to train efficiently inference
ML models. However, this inflicts unwarranted computation,
storage and communication costs on IoT devices that also suffer
from privacy leakage hazards. Federated Learning (FL) [1]
tackles these significant challenges by enabling the aggregation
of machine learning models, pre-trained on diverse IoT devices,
and collectively improving a global model. At the start of each
training round, the Edge server distributes the current global
model to all participating IoT devices. These devices train their
individual local models using their own limited datasets and
only transmit model parameter updates to an aggregator at the
Edge server upon completing each training round. This iterative
process continues until the global model reaches the desired
level of accuracy.

However, for FL to give off satisfying performances, it needs
to abide by some assumptions of which the two most important
ones are the following:
• The first assumption asserts that the data samples detected

by various IoT devices represent independent and iden-

tically distributed (i.i.d.) random variables. In this work,
building on the model in [2], we relax a bit this assumption
as it usually does not hold, since the local dataset of a
single IoT device may not be representative of the overall
population distribution. Such realistic relaxation leads to
accounting for the Mean Square Error of the prediction
accuracy that no longer equates to zero.

• Second, we need to assume that the size of local datasets
generated across federated learners is roughly the same to
produce balanced distributions. We keep this assumption
as this disparity in dataset sizes is primarily due to the
different types of IoT devices and different application
scenarios, while we consider in this work a homogeneous
scenario with the same type of IoT devices using the same
application.

Moreover, merging models via FL diminishes the variance in
prediction error by leveraging a broader dataset, yet it elevates
the error bias due to the heterogeneity in data. Hence, the learn-
ing performances depends on the number of IoT devices that
selected the same Edge server. Further, increasing the number
of federated learners has another downside as it increases the
communication cost among learning devices. Finally, another
parameter that needs to be factored in is the channel data rate
that directly relates to the selected Edge server. Thus, devices
need to select the most suitable Edge server in order to mini-
mize both the learning error and communication cost incurred
by federating the learning task. To address those challenges, an
Edge server selection problem is tackled as a non-cooperative
game by autonomous IoT devices. Accordingly, two types of
games are defined depending on the data set characteristics.

The type of federated learning we consider in this work
is coined as Edge-enabled in the thorough survey found in
[3]. Such a setting avoids resorting to the Cloud for prompt
computation and training of the learning model. Federated
learning is a perfect fit for edge computing and can leverage
both the abundant computation power of edge servers and the
data collected on outspread edge devices. Such combination is
even more relevant in the presence of constrained IoT devices
where the limited computing and storage capability of IoT
devices can be a hindrance to the final ML model performance.

In the state of the art, the work in [4] and [5] explored
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the trade-off between communication cost and the convergence
rate of the FL algorithm. Likewise, the work in [6] dealt with
resource allocation problem that minimizes the total energy
consumption and FL completion time in wireless IoT networks.
The work in [7] tackled the client selection for FL in IoT
edge computing when the data set are non-i.i.d. as we did
in this paper but in the scope of game theory. Many works
in the literature have considered FL through the lens of non-
cooperative game theory. However, the latter framework is
mainly used to incentivize end-users to participate in the
Federated Learning process ( [8], [9], [10] and [11]). In this
work, we address a multi-faceted problem in the context of IoT
Edge computing for FL where constrained IoT devices with
dissimilar data characteristics need to choose the most suitable
Edge server to strike a good balance between efficiency and
prompt convergence while taking into account the impact of
the wireless channel. We build on the work in [12] but in the
latter, we did not account for the data rate impact which is
paramount.

The rest of the paper is organized as follows. We provide
in section II the system model. In section III, we portray the
Edge selection problem as a non-cooperative game and identify
two types of games depending on the data set characteristics.
For each type of game, we characterize several pure Nash
Equilibriums. In section V, we provide practical numerical
examples to conduct a detailed analysis, and we subsequently
conclude the paper in section VI.

II. THE SYSTEM MODEL

Federated Learning is particularly suitable when the data is
naturally distributed among various IoT devices and collecting
that data on a cloud server to reduce the learning error can be
costly. Our work goes a step further and tackles the issue of
the Edge server selection through which the FL is performed.
Accordingly, the devised cost function includes the Mean
Square Error (MSE) of the adopted regression learning model
explained in II-A and the congestion cost of the Edge server
selection detailed in II-B.

A. Error Learning Model

We consider a set L = {1, .., M} of M constrained IoT
devices that need to perform ML tasks. Typically, constrained
IoT devices sense metrics such as temperature, humidity, etc.
and can predict future values for these metrics. Therefore,
linear regression is well suited as a ML model and is adopted
in this work. Each device j has access to n samples, with
θ j representing the predicted variable, i.e., the coefficient on
the true classification function. Following the model outlined
in [2], the parameter θ j for any device j is drawn from a
normal distribution with a mean of 0 and variance σ2, while
µe denotes the expectation of the error parameter. The training
dataset, consisting of n samples, is denoted by Xj , and the
predicted variable Yj is linearly dependent on Xj , expressed
as Yj = θ j · Xj + ηj , where ηj is a random variable with a
mean of µe. Additionally, the data samples Xj are generated
from a normal distribution with a mean of 0 and variance of
1. Utilizing the collected data samples, each device j aims to
estimate the mean θ̂ j .

Because of the limited amount of data each device has access
to and the limited capacity of the learning devices, this model
has relatively high error. Thus, devices can federate the learning
process through an Edge server Ek to reduce the prediction
error. We consider a set K = {1, ..,K} of K Edge servers. As
we consider a cellular IoT network, an Edge server is typically
the base station. Any IoT device j that selected an Edge server
Ek sends to the latter its estimated parameter θ̂ j . Edge server
Ek sends back a single model to all devices that selected it as
follows:

θ̂Ek
=

1
|Ek |

∑
j∈Ek

θ̂ j, (1)

where Ek is the set of devices federating the learning through
Edge server Ek and |Ek | is the cardinal of Ek such as:

|Ek | =
∑
j∈L

1l{device j selected Ek }

which is the number of devices that selected Edge server Ek .
Further, we define the mean number of devices that selected

Edge Ek simply as:

|Ek | = E(
∑
j∈M

1l{device j selected Ek }) (2)

=
∑
j∈M

E(1l{device j selected Ek }) =
∑
j∈M

xkj (3)

where xkj is the probability of choosing Edge Ek by device j.
As proven by [2], the MSE recorded for a device federating

learning through linear regression with |Ek | − 1 other devices,
is given by:

MSEk =
µe

(n − 2) · |Ek |
+ σ2 ·

|Ek | − 1
|Ek |

, (4)

Accordingly, we denote by MSEk the Mean Square Error
recorded by devices learning through the same Edge server Ek .



B. Communication Cost Model

When the learning model is computed through Edge server
Ek , each device joining the latter inflicts an additional com-
munication cost among devices in Ek . We adopt a TDMA
channel type access like in NB-IoT (Narrow Band IoT) [13]
or RedCap [14]. In such a setting, the mean rate of device j
when communicating with Edge server Ek is given by:

Rj,k =
Capj,k

|Ek |
(5)

where Capj,k is the mean capacity when device j is commu-
nicating alone with Ek and |Ek | is the mean delay endured
as devices send in turn (in a given time slot) their estimated
parameters to Ek that will operate the aggregated estimation.
We consider that one packet is sufficient to send the learned
parameter (one metric is learned) and is sent in one time
slot. Further, orthogonal channels are re-allocated among Edge
servers to cancel out interference. Thus, the communication cost
of device j via Ek , denoted by δj,k , mirrors the delay endured
by device j when communicating with the selected Edge server
Ek and is hence inversely proportional to the rate obtained:

δj,k =
|Ek |

Capj,k
(6)

C. Cost Function

Accordingly, the cost of a device j through Edge Ek is as
follows (for xj,k = 1):

Cj,k = MSEk + αδj,k, (7)

where α is a normalizing factor. We deduce the mean cost of
device j:

Cj =
∑
k∈K

xkj ·
( µe
(n−2) − σ

2

1 +
∑

i∈M xki
+

α

Capj,k
(1 +

∑
i∈M

xki )
)
, (8)

III. NON-COOPERATIVE EDGE SELECTION GAME

We define the continuous game Gc =
〈
M, Sc,C

〉
:

• The strategy of device j ∈ M, denoted by xj = {xkj }, ∀k ∈
K, where xkj is the probability that device j chooses Edge
server Ek .

• The space of strategies formed by the Cartesian product
of each set of strategies Sc = Sc

1 × ... × Sc
M . Therefore,

Sc
j = [0, 1], ∀ j ∈ M.

• A set of cost functions C = {C1, ...,CM } given by (8).
In particular, we will consider a more realistic setting where

we restrict the choice of any device to its two closest Edges
(or Base Stations). Hence, only devices that select the same
couple of Edges, deemed Sl = {El, E ′l }, engage in the same non-

cooperative game Gl =
〈
Ml, Sl,C

l
〉
, where Ml is the set of

IoT devices that compete for the same Edges El and E ′
l
. Hence,

the strategy of device j ∈ Ml , coined xlj , is the probability
of choosing Edge El doted with a data rate of Capj (hence,
choosing E ′

l
with probability 1 − xj through capacity Cap′j).

The strategy space of device j is Sl
j = [0, 1], ∀ j ∈ Ml .

Finally, the cost function of device j simplifies from (8) to:

C
l

j(x
l
j, xl−j) = xlj · (Fj(xl−j) − Hj(xl−j)) + Hj(xl−j) (9)

where

Fj(xl−j) =
µe
(n−2) − σ

2

1 +
∑

i∈Ml
i,j

xli
+

α

Capj
· (

∑
i∈Ml
i,j

xli + 1) (10)

and

Hj(xl−j) =
µe
(n−2) − σ

2

Ml −
∑

i∈Ml
i,j

xi
+

α

Cap′j
· (Ml −

∑
i∈Ml
i,j

xi) (11)

with Ml = |Ml |.

Proposition 1 The Gl =
〈
Ml, Sl,C

l
〉

has a pure NE.

Proof: For every j ∈ Ml , the set Sl
j is compact, and C

l

j is
strictly convex w.r.t. xlj (as it is linear in xlj) and continuous
w.r.t. xli, i , j. Hence, a Nash equilibrium exists according to
[15]. Further, best response dynamics permit attaining the NEs.

A. Computing Mixed Nash Equilibirums

We will compute in this section the various Nash Equilibri-
ums.

Proposition 2 The Nash equilibrium is either the solution of
the following system of equations:

β

Yj + 1
+

α

Capj
· (Yj + 1) =

β

Ml − Yj
+

α

Cap′j
· (Ml −Yj), ∀ j ∈ Ml

(12)
where Yj =

∑
i∈Ml
i,j

xli and β =
µe
(n−2) − σ

2.

Or at the boundaries of the strategy space.

Proof: Since the cost functions are convex, at the Nash equi-
librium, the xlj, ∀ j ∈ Ml are obtained by computing the partial
derivative of the cost function in (9) of each player in respect
to its action xlj and by equating the result to zero.

∂C
l

j

∂xlj
= Fj(xl−j) − Hj(xl−j) = 0, ∀ j ∈ Ml

When (12) gives a real solution (in fact (12) is a polynomial
of degree 3 in Yj with one guaranteed real solution) such as
Yj = Kj, ∀ j ∈ Ml we can deduce the embedded xlj given by:

xlj =

∑Ml

i=1 Ki

Ml − 1
− Kj (13)

However, the solution in (13) is not always feasible (not
necessarily between 0 and 1). Therefore, we will study in the
next section the existence of Pure Nash Equilibriums (PNE).



B. Computing Pure Nash Equilibirums

In this section, xlj are binary variables that equal one if device
j selects Edge server El and 0 if Edge server E ′

l
is selected.

The cost function of device j can be reformulated as:

Cl
j =


β
|El |
− σ2 + |El |

Cap j
if xlj = 1

β
|E′

l
|
− σ2 +

|E′
l
|

Cap′j
if xlj = 0

(14)

where β = µe
(n−2) −σ

2, |El | (resp. |E ′
l
|) is the number of devices

that chose Edge server El (resp. E ′
l
). Recall that Ml = |El |+|E ′l |.

Moreover, we need to distinguish two cases: case I where
β =

( µe
n−2 − σ

2) ≤ 0 and case II where β =
( µe
n−2 − σ

2) > 0.
In each case, we will compute the Pure Nash Equilibriums.

1) PNE for Case I: We compute the discrete derivative of
the cost function in (14) relative to the number of devices that
selected the same Edge server:

dCl
j =

{
−

β
|El |( |El |−1) +

α
Cap j

if xlj = 1
−

β
|E′

l
|( |E′

l
|−1) +

α
Cap′j

if xlj = 0 (15)

It is straightforward to verify that the cost function is increasing
in the number of devices that chose the same Edge server as
β ≤ 0. Hence, we are in presence of the so-called unweighted
crowding game. In such games, the cost function is player
specific (as it depends on the mean capacity of the IoT device)
and it is non-decreasing in the number of players that selected
the same strategy. According to [16], unweighted crowding
games with only two strategies (Edge servers El and E ′

l
) have

the Finite Improvement Property (FIP). Interestingly, PNE of
games with the FIP can be attained with fully distributed
Replicator dynamics [17].

Let mixed strategy qj = (qj,1, qj,2, . . . , qj,K ) be a probability
distribution over pure strategies. In other words, pure strategy
aj(t) = s is chosen with probability qj,s ∈ [0, 1], with∑K

s=1 qj,s = 1. Let Q j be the simplex of mixed strategies for
IoT device j. Let Q =

∏M
j=1 Q j be the space of all mixed

strategies. A strategy profile Q = (q1, ..., qM ) ∈ Q specifies the
(mixed or pure) strategies of all players. Following classical
convention, we write Q = (qj,Q−j), where Q−j denotes the
vector of strategies played by all other devices.

Definition 1 The game mechanics work as follows: at t = 0,
we begin with q(0) = (q1(0), ..., qM (0)) any random vector of
probabilities. At each iteration t > 0:

1) Each device j chooses an action aj(t) (aka an Edge node)
according to probability distribution qj(t).

2) Each device j learns the cost Cj(t) resulting from its
choice aj(t) and the set of all actions of other players.

3) Each device j updates the probability vectors qj(t +1) in
the following way:

qj,s(t + 1) =


qj,s(t) + b(1 − C j (t)

Cmax
)(1 − qj,s(t))

if s = aj(t),
qi,s(t) − b(1 − C j (t)

Cmax
)qi,s(t)

otherwise,

(16)

where 0 < b < 1 is a parameter and Cmax is the maximal
cost, obtained when all devices select the same Edge.

Theorem 1 Consider G as an instance of the game G. Let Q∗

denote a set of mixed profiles where at most one player employs
a pure strategy. Irrespective of the initial condition within Q −
Q∗, the learning algorithm invariably weakly converges to a
Nash Equilibrium.

The convergence proof for Theorem 1 can be found in [17].
These types of algorithms are fully distributed, as decisions

made by devices are entirely decentralized: at any iteration t,
device j only needs to know the cost Cj(t) of selected Edge
node, which in turn depends on the number of devices that
selected that same Edge node and the the corresponding data
rate. One message sent by the Edge node to its active devices
and communicating the number of those devices will suffice as
a signaling message. That signaling message can be sent as a
unicast message by the Edge node to any device that selected
it anew.

2) PNE for Case II: For Case II, we resort to an efficient
heuristic to pinpoint PNE. We know that at Nash Equilibrium,
all devices are in mutual best response, denoted by zlj, ∀ j ∈
Ml . Hence, according to (9), the optimal response of device j
satisfies what follows:

zlj(t + 1) =


0, if Fj(zl−j(t)) > Hj(zl−j(t)),
1, if Fj(zl−j(t)) < Hj(zl−j(t)),
Select randomly {0, 1}, if F(zl

−j(t)) = H(zl
−j(t))

(17)
Thus, we can build on (17) to conceive an iterative search
algorithm that is easy to implement. With a starting point xj(0)
for j ∈ Ml , the algorithm iterates until the strategies in the
previous iteration (xlj(t − 1)) and the current iteration (xlj(t))
remains the same for all devices: Extensive simulations carried

Algorithm 1 Iterative Best Response Dynamics to reach PNE
Initialize Let xj(0) can be any vector of probabilities ∀ j ∈ Ml .
repeat

For j = 1, ..., M ′

1) Compute F(x−j(t − 1)) − H(x−j(t))
2) Set xj(t) according to (17)

until All devices have the same strategy as in the previous
round;
Output zlj = xlj(t) for all j ∈ Ml .

out show the convergence of the proposed Algorithm 1 to Pure
Nash Equilibriums.

IV. PRICE OF ANARCHY

To evaluate the efficiency of the non-cooperative game
approach, we compare it against the optimal solution where



we seek to minimize the total cost of IoT devices. The corre-
sponding optimizing problem (P) can be written as follows:

minimize
a

Ctot (a) =
M∑
j=1

Cj(aj, a−j) (18)

subject to ak
j = {0, 1}, ∀ j ∈ L, ∀k ∈ K (19)
K∑
k=1

ak
j = 1, ∀ j ∈ L and

M∑
j=1

ak
j > 1, ∀k ∈ K

(20)

where a = {aj, j = 1, .., M}.
The problem (P) represents a binary non-linear optimization

problem. While such problems can theoretically be solved using
exhaustive search algorithms, the computational complexity
is in O(MK ). This renders exhaustive search computationally
demanding and intractable even for small-sized networks. Con-
sequently, we turn to Simulated Annealing heuristics (SA) [18]
as an alternative approach.

The SA heuristic has an acceptance probability that prevents
the algorithm from terminating at a local minima. Moreover,
the SA algorithm is quite effective in comparison with the
exhaustive search.

Algorithm 2 SA heuristic
Initialize Let a(t = 0) such as devices are spread on Edge
nodes.
repeat

For j = 1, ..., M
Select randomly an edge node and compute Ctot (t)

If Ctot (t) < Ctot (t − 1), update a(t)
Otherwise, update a(t) with probability e

Ctot (t )−Ctot (t−1)
T .

++t;
until t < N;

Our heuristic algorithm begins with an initial feasible solu-
tion, distributing all devices evenly across Edge nodes while
ensuring each Edge node serves more than one device. Subse-
quently, in each iteration, a device is randomly selected to shift
from its Edge server to the next one. The resulting configuration
is considered a candidate solution, and the corresponding total
network cost is calculated. If the candidate solution reduces
the total cost compared to the previous iteration, it is accepted.
Otherwise, acceptance is determined by a given probability. The
algorithm continues iterating until reaching a maximum number
of iterations. The SA temperature, denoted by T , is maintained
throughout the algorithm.

V. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of the two
different Edge server selection games, β ≤ 0 and β ≥ 0, and
compare the cost realized at Pure Nash Equilibriums (PNE)
and mixed Nash Equilibriums. We compare these results to the

optimal solution using an exhaustive search for a small network
and using the Simulated Annealing meta-heuristics.

For simulation, we use MATLAB where we consider 500
simulation snapshots. Each is repeated until convergence is
achieved. All performance metrics are averaged and reported
with 95% confidence intervals. For both cases, β ≤ 0 and β ≥ 0
respectively, we considered the following parameters:
• Case I: µe = 30, n = 12, and σ = 3.
• Case II: µe = 30, n = 12, and σ = 1.

A. Case I: β ≤ 0
In Fig. 2, we illustrate the average network cost at Pure NE

and the Mixed NE. At PNE, a lower network average cost is
achieved compared to the Mixed NE regardless of the number
of IoT devices. However, the Replicator Dynamics, coined by
RL for Replicator Learning, used to obtain PNE necessitates
many iterations to reach convergence as displayed in Fig. 3,
whereas the Mixed NE is obtained directly through calculus.

However, the number of iterations required to reach con-
vergence by the RL solution is much higher than that needed
by the BR solution, which converges very rapidly within a
maximum of 10 iterations for 120 devices. In fact, when RL is
applied, the device learns by taking actions and interacting with
the environment through feedback in the form of rewards or
penalties. This can be done in a distributed fashion by balancing
between exploration and exploitation. Thus, the RL requires
more iterations than the BR that is typically implemented in a
semi-distributed fashion.

In Fig. 4, we evaluate the total network cost obtained by the
optimal solution solved via exhaustive search, the SA meta-
heuristic, the cost at PNE and Mixed NE. Due to the high
computational complexity of the optimal solution, we limited
the number of users to 5 and 10. Here again, the mixed NE
renders to highest cost. Moreover, as the number of devices
increases, the total cost achieves by the SA heuristic and at
PNE become very close to that obtained by the optimal scheme.

By increasing the number of devices in the network, we
resort only to SA since the exhaustive search is computationally
hard. In Fig. 5, we compared the total cost via the SA heuristics
and the total cost at PNE and Mixed NE. We note the small
discrepancies between results obtained for the sub-optimal
SA and at PNE regardless of the number of IoT devices in
the network, while performances at Mixed NE constantly lag
behind.

B. Case II: β ≥ 0
The same analysis is conducted for the second case. In

Fig. 6, we illustrate the average network cost at Pure NE and
Mixed NE. At PNE, a lower network average cost is achieved
compared to the Mixed NE regardless of the number of IoT
devices. Furthermore, the Iterative Best Response Dynamics
used to obtain PNE necessitates a few iterations to reach
convergence as displayed in Fig. 7, in comparison with the
Replicator Dynamics of the first case. In fact, when Replicator
Dynamics is applied, the device learns by taking actions and
interacting with the environment through feedback in the form
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Figure 3: Number of iterations vs the number of devices

of rewards or penalties. This is done in a completely distributed
fashion by balancing between exploration and exploitation.
Thus, the Replicator Dynamics (RL) requires much more
iterations than the iterative Best Response Dynamics that is
typically implemented in a semi-distributed fashion.

In Fig. 8, we evaluate the total network cost obtained by the
optimal solution solved via exhaustive search, the SA meta-
heuristic, at PNE and Mixed NE. Due to the high computational
complexity of the optimal solution, we limited the number of
devices to 5 and 10. Here again, the mixed NE renders the
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Figure 6: Average network cost vs the number of devices

highest cost. The optimal solution gives as expected the lowest
total cost, followed closely by the SA heuristics. The distributed
approach at NE gives off slightly worse results.

By increasing the number of devices in the network, we
resort only to the SA algoritm since the exhaustive search is
computationally hard. In Fig. 9, we compared the total cost
via the SA heuristics and the total cost at PNE et Mixed
NE. Contrary to the first case, we note a wider discrepancy
between results obtained for the sub-optimal SA and at PNE.
Performances at Mixed NE are still worse off.

We conclude that for both cases, mixed NE can be precluded.
Moreover, Pure NE are preferred to mixed ones as they lead to a
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clear cut Edge selection instead of probabilistically choosing an
anchor Edge. Moreover, results at PNE for Case I are very close
to the optimal performances at the cost of extended convergence
times. As for Case II, convergence to PNE is relatively pretty
swift at the cost of sub-optimal performances.

VI. CONCLUSION

Federated learning offers access to extensive data, a crucial
advantage for constrained IoT devices with limited memory.
Learning from a larger dataset diminishes variance in the
model, thereby decreasing errors. However, federating the
learning process involves communication costs among devices,
a factor to consider. In this paper, devices engage in a non-
cooperative game by selecting an Edge server for federated
learning. Autonomous device selections aim to minimize both
learning error and communication costs. Conclusions are con-
solidated through intensive numerical simulations showing that
efficient Edge selection is reached at Pure Nash Equilib-
rium through a fully distributed Replicator dynamics or semi-
distributed Best Response dynamics depending mainly on the
data set characteristics.
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