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5 ROCS, LISN, Université Paris Saclay, 91190 Gif-sur-Yvette, France

Abstract—Computational offloading is an efficient way to help
constrained IoT devices by performing heavy tasks on Edge
servers, especially tasks related to Machine Learning. Moreover,
due to their limited learning capacity and memory size, such
devices can only store a limited amount of data as a training
set for their learning. Consequently, learning prediction is bound
to be smeared with relatively high error. To mend that issue,
IoT devices can federate the learning process with their pairs
via an Edge server. However, offloading repeatedly the learning
model through a wireless access network is time consuming.
Hence, although learning collectively can reduce the learned
model variance, it inflicts a communication cost depending on
the selected Edge server. Therefore, in this paper, we model
the Edge Selection problem as a non-cooperative game where
devices autonomously and efficiently select an Edge server to
reduce both their learning error and their communication cost.
Depending on the characteristics of the dataset, we discern two
different types of games. For each game type, we implemented and
compared a semi-distributed algorithm based on Best Response
dynamics. We compared the obtained results with the optimal
centralized approach and with a less computationally intensive
meta-heuristics, to assess the price of anarchy. Our numerical
analysis shows that the Best Response algorithm strikes a good
balance between efficiency and swift convergence.

Index Terms—Edge Computing, Non-cooperative game theory,
Federated learning, Linear regression, IoT.

I. Introduction
Federated learning enables Machine Learning in a decen-

tralized fashion while providing privacy and economical bene-
fits [1]. It is particularly suitable in situations where data is
naturally distributed among disparate devices and collecting
that data on a Cloud server to reduce the learning error can
be costly [2]. Moreover, as IoT devices are capacity and
memory constrained, they cannot successfully perform learning
on their own. Hence, each device keeps its own data while a
shared learning model is trained on each device and aggregated
centrally at an Edge server. We build on the model proposed in
[3] where each IoT device seeks to obtain a linear regression
learning model with minimal expected Mean Squared Error
(MSE) on its data distribution. IoT devices combine their
learned parameters with a group of devices that selected the
same Edge server. Hence, devices need to select the most
suitable Edge server in order to minimize both the learning error
and communication cost incurred by federating the learning
task. The Edge server selection is tackled as a non-cooperative
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Figure 1: Edge Selection Game

game by autonomous IoT devices. Several games are defined
depending on the data set characteristics.

The type of Federated Learning (FL) we consider in this
work is coined as Edge-enabled in the thorough survey on
Edge Computing found in [4]. Such a setting avoids resorting to
the Cloud in order to ensure prompt computation and training
of the learning model. In particular, the work in [5] explores
the trade-off between communication cost and the convergence
rate of the FL algorithm. We build on our previous findings in
[6] where IoT devices form learning clusters via cooperative
game theory, to increase both communication efficiency and
learning accuracy. However, in this work, IoT devices are
more constrained in term of capacity and can not rely on a
simple IoT device for aggregation and signaling. Instead, we
consider a more realistic assumption where FL is done through
an Edge server and IoT devices need to autonomously choose
the most suitable one via non-cooperative game theory. In [7],
the impact of communication among federating devices was
taken into account but far from game strategic considerations.
Similarly, in [8] and [9], the main objective was to accelerate
the convergence of federated learning in the context of an
imperfect wireless channel, but not in the scope of a coalition
formation game.

The main contributions of our work can be summarized as
follows:

• We model the Edge Selection problem as a non-
cooperative game where each IoT device strives to mini-



mize, on its own, its cost function. The latter depends on
the MSE resulting from federating the learning task and on
the communication cost incurred from sending iteratively
the learning model to the selected Edge server.

• We identify two distinct types of games depending on the
dataset characteristics. This is important because it allows
us to choose the appropriate algorithm for the specific
problem we are trying to solve.

• We implement a semi-distributed Best Response dynamics
for the devised games. We evaluated their performance
by comparing them to the optimal solution using an
exhaustive search to gauge the Price of Anarchy (PoA).
As the exhaustive search is computationally intensive, we
resorted for large scenarios to a meta-heuristics solution
based on Simulated Annealing (SA).

• Intensive simulation results showed that the Best Response
(BR) algorithm can find the best edge very promptly,
without sacrificing efficiency, making it suitable for real-
world scenarios.

The rest of the paper is organized as follows. We provide in
section II the system model. In section III, we portray the Edge
selection problem as a non-cooperative game and identify two
types of games depending on the dataset characteristics. For
each type of game, we characterize pure Nash Equilibriums in
sections IV and V, respectively. In section VII, we give practical
numerical examples for an in-depth analysis by assessing the
price of anarchy given in section VI. We conclude the paper in
section VIII.

II. The SystemModel

We consider a set L = {1, .., 𝑀} of 𝑀 constrained IoT
devices that aim to perform learning through linear regression
on a limited data set. Devices can predict future values on the
metrics they are sensing (temperature, humidity, etc.) and which
constitute their dataset.

Every device 𝑗 has access to 𝑛 samples as a training dataset.
The samples are denoted by 𝑋 𝑗 and the predicted variable 𝑌 𝑗
depends linearly on 𝑋 𝑗 such as 𝑌 𝑗 = 𝜃 𝑗 ·𝑋 𝑗 +𝜂 𝑗 , where 𝜃 𝑗 is the
slope of the linear regression and 𝜂 𝑗 is the random bias of the
regression, of mean 𝜇𝑒. Based on the 𝑛 data samples collected,
each device 𝑗 seeks to estimate the mean 𝜃 𝑗 . However, due to
the small size of the dataset and the limited learning capacity
of IoT devices, this model has a relatively high error rate.

Thus, devices can federate the learning process through an
Edge server 𝐸𝑘 to reduce the learning error. The training is done
using an iterative process, such as stochastic gradient descent
(adopted in this paper), where the model is updated in multiple
rounds, based on the local data of each participating device.

We consider a set K = {1, .., 𝐾} of 𝐾 Edge servers. Edge
servers are uniformly distributed in the network. Any IoT
device 𝑗 that selected an Edge server 𝐸𝑘 send to the latter
its estimated parameter 𝜃 𝑗 and Edge server 𝐸𝑘 sends back a
single model to all devices that selected it as follows:

𝜃𝐸𝑘
=

1
|E𝑘 |

∑︁
𝑗∈E𝑘

𝜃 𝑗 , (1)

where E𝑘 is the set of devices federating the learning through
Edge server 𝐸𝑘 and |E𝑘 | is the cardinal of E𝑘 such as:

|E𝑘 | =
∑︁
𝑗∈L
1l{𝑑𝑒𝑣𝑖𝑐𝑒 𝑗 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝐸𝑘 }

𝑖.𝑒., the number of devices that selected Edge server 𝐸𝑘 .
As proven by [3], the MSE recorded for a device federating

learning through linear regression with |E𝑘 | − 1 other devices,
is given by:

𝑀𝑆𝐸𝑘 =
𝜇𝑒

(𝑛 − 2) · |E𝑘 |
+ 𝜎2 · |E𝑘 | − 1

|E𝑘 |
, (2)

where 𝜎2 is the average variance in the true parameters between
federating devices. Hence, we denote by 𝑀𝑆𝐸𝑘 the MSE rate
of devices learning through the same Edge server 𝐸𝑘 .

Further, when the learning model is computed through Edge
server 𝐸𝑘 , each device joining the latter inflicts an additional
communication cost among devices in E𝑘 . We adopt a Time
Division Multiple Access (TDMA) channel access as we con-
sider constrained 5G cellular IoT networks (such as Narrow
Band IoT (NB-IoT) [10] or 5G NR-Light (RedCap) [11]). In
such a setting, devices that select Edge server 𝐸𝑘 endure a
delay proportional to |E𝑘 | as devices send in turn (in a given
time slot) their estimated parameters to 𝐸𝑘 that will operate
the aggregated estimation (roughly after |E𝑘 | time slots). We
consider that one packet is sufficient to send the learned
parameter (one metric is learned) and is sent in one time slot.
Furthermore, orthogonal channels are re-allocated among Edge
servers to cancel out interference. Thus, the communication
cost of device 𝑗 via 𝐸𝑘 is denoted by 𝛿𝑘 and given by:

𝛿𝑘 = |E𝑘 | (3)

Finally, the global cost of device 𝑗 through Edge 𝐸𝑘 is:

𝐶 𝑗 (𝑎 𝑗 = 𝐸𝑘) = 𝑀𝑆𝐸𝑘 + 𝛼𝛿𝑘 , (4)

where 𝛼 is a normalizing factor and 𝑎 𝑗 is the action of device
𝑗 which is selecting Edge server 𝐸𝑘 .

In Table I, we summarize the adopted variables for the
system model.

Table I: Notation for the system model
Notation Definition
𝑋 𝑗 Samples for IoT device 𝑗
𝑌𝑗 Predicted variables for IoT device 𝑗
𝜃 𝑗 Slope of the regression model for IoT device 𝑗
𝜂 𝑗 Random bias of the regression model for IoT device 𝑗
𝜇𝑒 Mean of the random bias of the regression models
𝑛 Number of data samples collected for IoT device 𝑗
𝑀𝑆𝐸𝑘 MSE rate of devices learning through the Edge server 𝐸𝑘

|𝐸𝑘 | Number of devices that selected Edge server 𝐸𝑘

𝜎2 Average variance in the true model parameters between fed-
erating devices

𝛿𝑘 Communication cost of device 𝑗 via 𝐸𝑘

𝛼 Normalizing factor
𝑎 𝑗 Action of device 𝑗 (which consists of selecting an Edge

server)



III. Non-Cooperative Edge Selection Game

The formulation of the Edge Selection non-cooperative game
𝐺 = ⟨L,K, 𝐶⟩ can be described as follows:

• A set of players L = (1, ..., 𝑀) which is the set of IoT
devices.

• A set of strategies for any player 𝑗 is 𝑆 𝑗 = K = (1, ..., 𝐾)
which is the set of Edge servers.

• The space of pure strategies 𝑆 formed by the Cartesian
product of each set of pure strategies 𝑆 = 𝑆1×𝑆2× ...×𝑆𝑀 .

• A set of cost functions {𝐶1, 𝐶2, ..., 𝐶𝑀 } that quantify the
players’ preferences over the possible outcomes of the
game. Outcomes are determined by the particular action 𝑎 𝑗
chosen by device 𝑗 and actions chosen by all other devices
𝑎− 𝑗 . Action 𝑎 𝑗 corresponds to selecting a particular Edge
server. Hence, it is a vector such that 𝑎 𝑗 = (𝑎𝑘

𝑗
, 𝑘 = 1, .., 𝐾)

where 𝑎𝑘
𝑗
= {0, 1} is a binary variable that equals 1 if

device 𝑗 selects Edge server 𝐸𝑘 , and 0 otherwise. Thus,
the cost of device 𝑗 is 𝐶 𝑗 (𝑎 𝑗 , 𝑎− 𝑗 ) given by (4).

A. Nash Equilibrium

The main objective of non-cooperative game is to find an
effective solution called a Nash Equilibrium (NE). The NE is
a profile of strategies that self-interested players adhere to and
from which any unilateral deviation cannot lead to a profit. As
such, it can be defined as a strategy profile where each player’s
strategy is an optimal response to the other players’ strategies:

𝐶 𝑗 (𝑎 𝑗 , 𝑎− 𝑗 ) ≤ 𝐶 𝑗 (𝑎′𝑗 , 𝑎− 𝑗 ),∀ 𝑗 ∈ L,∀𝑎′𝑗 ∈ 𝑆 𝑗 (5)

B. Analyzing the Cost Function

We denote by 𝐿 = |E𝑘 | the number of NB-IoT devices that
selected the same Edge device 𝐸𝑘 . We take the first and second
derivative of the cost function in (4) with respect to 𝐿:

𝑑𝐶 𝑗 (𝐿)
𝑑𝐿

= − 𝛽

𝐿2 + 𝛼 (6)

𝑑2𝐶 𝑗 (𝐿)
𝑑𝐿2 =

2𝛽
𝐿3 (7)

where 𝛽 =
( 𝜇𝑒
𝑛−2 − 𝜎2) .

We distinguish two cases: Case I where 𝛽 ≤ 0 and Case II
where 𝛽 > 0.

IV. Devised Game for Case I

It is straightforward to verify that the cost function is
increasing in the number of devices that chose the same strategy
𝐸𝑘 as 𝑑𝐶 𝑗 (𝐿)

𝑑𝐿
> 0 when 𝛽 ≤ 0. Hence, we are in presence of the

so-called congestion games [12]. In our game, we only want to
allow deterministically chosen actions, called pure strategies.
Finite games possess at least one NE but are not guaranteed
to have pure NEs. In our setting, mixed NE are precluded as
it is not feasible to federate the learning through various Edge
servers. Hence, we are only interested in a Pure NE (PNE).

A. Best Response dynamics to reach PNE

Congestion games are particularly interesting as they have
Pure Nash Equilibrium (PNE) and Best response dynamics per-
mit attaining those PNE as proven in [13]. A semi-distributed
Best Response dynamics where devices play in turn, and at
each iteration, a centralized unit communicates the cost of
each strategy (the cost realized in every Edge server), the
playing device selects the strategy with the lowest cost. The
algorithm terminates when no device changes its strategy from
the previous round as sketched in Algorithm 1.

Algorithm 1 Best Response Algorithm
Initialize The 𝑀 IoT devices are assigned randomly to the 𝐾
Edge servers.
repeat

For 𝑗 = 1, ..., 𝑀

Device 𝑗 selects Edge server 𝑘 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐶 𝑗 (𝑎 𝑗 , 𝑎− 𝑗 )
until All devices have the same strategy as in the previous
round;

V. Devised Games for Case II

In case II, we have that 𝑑
2𝐶 𝑗 (𝐿)
𝑑𝐿2 > 0 as 𝛽 > 0. Thus, the cost

function is convex in 𝐿. We denote by 𝐿∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐶 𝑗 (𝐿).
Equating 𝑑𝐶 𝑗 (𝐿)

𝑑𝐿
to zero gives 𝐿∗ =

√︃
𝜇𝑒
𝑛−2 −𝜎2

𝛼
.

It’s much more tedious to find PNE for Case II. Therefore,
we identify various instances of the game depending on the
number of IoT devices as follows.

A. Game II.1: 𝑀 ≤ 𝐿∗

In this game, the total number of players 𝑀 is lower than
the argument of the minimum 𝐿∗. This particular scenario
corresponds to a sparse IoT deployment. Given that the cost
function is decreasing before the minimum, The NE consists
in grouping all devices together at any Edge device. In fact,
any unilateral movement will strictly increase any device cost.
We conclude that in this case, only one Edge server is needed
except if IoT devices are geographically very wide apart.

B. Game II.2: 𝑀 > 𝐿∗

In this scenario, the number of devices is greater than 𝐿∗.
Thus, if 𝐿∗ devices choose the same Edge, they can realize
minimal cost. This scenario can be again divided into 2 sub-
scenarios: one where the total number of devices 𝑀 is a
multiple of 𝐿∗ and one where 𝑀 is a not a multiple of 𝐿∗.

1) 𝑀 = 𝑒 · 𝐿∗: The total number of devices can be written
as 𝑀 = 𝑒 · 𝐿∗ where 𝑒 ∈ N. We argue that for this scenario,
a NE is where 𝑒 Edges are chosen by exactly 𝐿∗ IoT devices
each. In fact, if any device decides to selfishly choose another
Edge with already 𝐿∗ devices or an un-selected Edge where it
is on its own, it would face a strictly higher cost as it is no
longer at the optimal (𝐿 ≠ 𝐿∗). Hence, no device will change
its action unilaterally.



2) 𝑀 = 𝑒 · 𝐿∗ + 𝑒′: The total number of devices can be
written as 𝑀 = 𝑒 · 𝐿∗ + 𝑒′ with 𝑒, 𝑒′ ∈ N with 𝑒′ < 𝐿∗. In this
case, we have two possible scenarios and we will identify for
each a PNE:

a) If 𝑒′ ≤ 𝑒: We argue that a NE is where 𝑒 − 𝑒′ Edges
are chosen by exactly 𝐿∗ devices each and 𝑒′ Edges are chosen
𝐿∗+1 devices each. Any movement among the Edges will either
deteriorate the cost (movement from an Edge selected by 𝐿∗

devices to an Edge selected by 𝐿∗ + 1 devices, as the cost
is increasing for 𝐿 > 𝐿∗) or leaves it unchanged (movement
from size 𝐿∗ + 1 Edge to size 𝐿∗ Edge) which proves the Nash
stability. Moving to an un-selected Edge server is precluded as
the cost is prohibitive and Federated learning looses its purpose
(the device endures the communication cost without harvesting
the gains from FL).

b) If 𝑒 < 𝑒′ < 𝐿∗: In that case, 𝑒′ can be re-written as 𝑒′ =
𝑘 · 𝑒 + 𝑓 , where 𝑓 < 𝑒 (corresponding to the Euclidean division
of 𝑒′ by 𝑒). We argue that a Nash Equilibrium is attained when
the 𝑒′ remaining devices spread evenly among the 𝑒 Edges
already selected by 𝐿∗ devices. In fact, a NE is attained when
𝑒 − 𝑓 Edges are each chosen by exactly 𝐿∗ + 𝑘 devices and
𝑓 Edges are each chosen 𝐿∗ + 𝑘 + 1 devices. Any movement
among the Edges will either deteriorate the cost (movement
from an Edge selected by 𝐿∗ + 𝑘 devices to an Edge selected
by 𝐿∗ + 𝑘 + 1 devices, as the cost is increasing for 𝐿 > 𝐿∗)
or leave it unchanged (movement from size 𝐿∗ + 𝑘 + 1 Edge to
size 𝐿∗ + 𝑘 Edge) which proves the Nash stability. Other PNE
exist, but this particular one is a good compromise between
the devices interest (realizing an acceptable cost, as close as
possible from the optimal cost at 𝐿∗) and the system interest
as we limit the number of operating Edge servers.

Extensive numerical simulations carried out show the validity
of the proposed pure Nash Equilibriums. Any unilateral devi-
ation from the proposed PNE deteriorates the cost or leave it
unchanged for the deviating device.

VI. Price of anarchy PoA
To evaluate the efficiency of the non-cooperative game ap-

proach, we compare it against the optimal solution where we
seek to minimize the total cost of devices. The corresponding
optimizing problem (P) can be written as follows:

minimize
𝒂

𝐶𝑡𝑜𝑡 (𝒂) =
𝑀∑︁
𝑗=1

𝐶 𝑗 (𝑎 𝑗 , 𝑎− 𝑗 ) (8)

subject to 𝑎𝑘𝑗 = {0, 1}, ∀ 𝑗 ∈ L, ∀𝑘 ∈ K (9)
𝐾∑︁
𝑘=1

𝑎𝑘𝑗 = 1, ∀ 𝑗 ∈ L (10)

𝑀∑︁
𝑗=1

𝑎𝑘𝑗 = 0 ∨
𝑀∑︁
𝑗=1

𝑎𝑘𝑗 > 1, ∀𝑘 ∈ K (11)

where 𝒂 = {𝑎 𝑗 , 𝑗 = 1, .., 𝑀}.
Constraints (10) impose that each device is attached to only

one Edge server. Constraints (11) impose that either an Edge
server is unselected or selected by at least one device.

Problem (P) is a binary non-linear optimization problem.
Such a problem can be solved using an exhaustive search
algorithm. However, the complexity is in 𝑂 (𝑀𝐾 ). This makes
the exhaustive search computationally intensive, and rapidly
becomes intractable for modest sized networks. Therefore, we
resort to the well-known Simulated Annealing heuristic (SA).

The SA heuristic includes an acceptance probability, which
can prevent the algorithm from terminating at local minima
[14]. Moreover, the SA algorithm is quite effective in compar-
ison with the exhaustive search.

Algorithm 2 SA heuristic
Initialize Let 𝒂(𝑡 = 0) such as devices are spread on Edge
servers.
repeat

For 𝑗 = 1, ..., 𝑀
Select randomly an Edge server and compute 𝐶𝑡𝑜𝑡 (𝑡)

If 𝐶𝑡𝑜𝑡 (𝑡) < 𝐶𝑡𝑜𝑡 (𝑡 − 1), update 𝒂(𝑡)
Otherwise, update 𝒂(𝑡) with probability 𝑒

𝐶𝑡𝑜𝑡 (𝑡 )−𝐶𝑡𝑜𝑡 (𝑡−1)
𝑇 .

++t;
until 𝑡 < 𝑁;

Our heuristic starts with an initial feasible solution where all
devices are evenly spread across Edge servers, while making
sure an Edge server serves more than one device. Then, at each
iteration, a device is randomly chosen to change its Edge server
which is selected uniformly from the available Edge servers.
This is a candidate solution for which the total network cost is
computed. The candidate solution is accepted if it decreases the
total cost in comparison with the previous iteration; otherwise,
it is accepted with a given probability. The algorithm iterates
until a given stop criterion is satisfied. In our case, until a
number 𝑁 of iterations is reached. We denote by 𝑇 the SA
temperature that is kept constant.

VII. Numerical Simulations
We evaluate in this section the performances of the de-

vised games portraying Edge server selection by IoT devices.
Numerical simulations were run in Matlab. Recall that 𝜎2 is
the variance in the true model parameters between federating
devices, 𝑛 is the number of samples in the training dataset
for the devices and 𝜇𝑒 is the mean of the random bias of the
linear regression for the dataset considered. Finally, 𝛼 is the
normalizing factor introduced in the definition of the device
cost function. We considered two scenarios with 3 and 5 Edge
servers respectively, as, in a practical setting, Edge servers are
co-localized with Base Stations, and up to 5 Base Stations spans
a reasonable geographically network area. Moreover, devices
should limit their choice to the geographically closest Edge
servers to curb the suffered communication latency.

In subsection VII-A, we mainly assess the various games
performances through the Price of Anarchy by confronting the
performances at NE against the Optimal scheme. We adopt the
following numerical values: 𝜎 = 2, 𝑛 = 12, 𝜇𝑒 = 10 (for Case
I) and 𝜇𝑒 = 50 (for Case II). Finally, we consider 𝛼 = 0.5.



A. Assessing the Price of Anarchy

We assess the Price of Anarchy for the various devised games
in what follows.

1) PoA for Case I: First, we evaluate the PoA with 3 Edge
servers by comparing the total network cost obtained by the
optimal solution solved via exhaustive search, the SA heuristic,
and the cost at NE via Best Response (BR) dynamics. The
results are reported in Fig. 2. With only five devices, the three
approaches perform identically with a total cost of 20. As the
number of devices increases, the performances start to slightly
vary with that of the SA remaining very close to the optimal
solution. The cost is slightly higher at PNE.
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Figure 2: Total network cost vs the number of devices

With 5 Edge servers, we resort only to SA because the
exhaustive search is computationally hard. In Fig. 3, we com-
pared the cost resulting from using the Best Response dynamics
to that of the SA heuristic. With 10 devices present, the
performance of the two is near identical with a cost close to
40. Nonetheless, as the number of devices increases the gap
between the performances of the SA heuristic and the Best
Response dynamics further narrows. This gives precedence to
the BR algorithm as it takes no more than two iterations to
converge, contrarily to the SA as shown is Fig. 4. The latter
takes around 5 iterations to converge with 10 devices present
and close to 30 when there are 120 devices.

2) PoA for Case II: Here again, the same conclusion can
be drawn as illustrated in Fig. 5. The discrepancies between
the optimal, the SA heuristic and the BR algorithm are quite
small. With three or five Edge servers and with up to 120
devices present, the SA approach exhibits almost the same cost
with the optimal solution, whereas the BR algorithm renders
a slightly higher cost. Nonetheless, the optimal solution is
computationally intensive, and the SA heuristic needs a few
hundred of iterations for convergence. As a result, the BR
algorithm, which in this case converges in no more than three
iterations, remains the most practical and efficient solution.

VIII. Conclusion

Federated learning enables devices to learn collaboratively
from information collected from numerous devices without
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Figure 3: Total network cost vs the number of devices for BR
and SA
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Figure 4: Mean number of iteration until convergence for SA

sharing the original data, addressing privacy concerns. Fur-
thermore, Federated learning overrides the need for costly data
transfer to an Edge server, as only lightweight learning models
are sent to the latter. Learning on a larger dataset reduces the
variance in the learned model, and in turn its error. However,
federating the learning process inflicts a communication cost
among learning devices that must be taken into account. In
this paper, devices engage in a non-cooperative game by
identifying through which Edge server to best federate the
learning process. Autonomous devices make their selection in
order to reduce both their learning error and communication
costs. Conclusions are consolidated through intensive numerical
simulations showing that Edge selection depends mainly on the
dataset characteristics and that semi-distributed Best Response
dynamics ensure prompt convergence to highly efficient results.
In future work, we intend to apply the proposed framework to a
heterogeneous setting where we factor in the distance between
the IoT devices and the Edge servers, as it directly impacts the
communication cost.
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Figure 5: Performance as a function of the number of IoT
devices
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