Graph Convolutional Reinforcement Learning for
Load Balancing and Smart Queuing

Hassan Fawaz*, Omar Houidi*, Djamal Zeghlache*, Julien Lescal, Pham Tran Anh QuangT, Jérémie LeguayT,
and Paolo Medagliani
*SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France
T Huawei Technologies Ltd., Paris Research Center, France

Abstract—In this paper, we propose a graph convolutional
deep reinforcement learning framework for both smart load
balancing and queuing agents in a collaborative environment.
We aim to balance traffic loads on different paths, and then
control how packets belonging to different flow classes are
dequeued at network nodes. Our objective is twofold: first to
improve general network performance in terms of throughput
and end-to-end delay, and second, to ensure meeting stringent
service level agreements for a set of classified network flows.
Our proposals use attention mechanisms to extract relevant
features from local observations and neighborhood policies to
limit the overhead of inter-agent communications. We assess our
algorithms in a Mininet testbed and show that they outperform
classic approaches to load balancing and smart queuing in terms
of throughput and end-to-end delay.

Index Terms—Smart Queuing, Load Balancing, Deep Rein-
forcement Learning, Multi-Agent Systems.

I. INTRODUCTION

With an ever-increasing demand for higher throughput and
lower latency values, traditional traffic engineering and queue
management approaches in networks are showing their weak-
nesses. Load balancing, as well as traffic scheduling, play a
primary role in determining the efficient sharing of bandwidth,
and in particular, the capability of networks to satisfy Service
Level Agreements (SLAs) for flows across different metrics
such as throughput, delay, jitter, and others.

In a Software-Defined Wide Area Network (SD-WAN), a
central controller holds a set of network policies that are
deployed at edge routers charged with interconnecting dif-
ferent sites and branches. The edge routers are configured
to transmit traffic over different transport networks such as
internet, MPLS, or private lines. These edge devices are
tasked with making real-time decisions following how the
traffic varies in order to sustain SLAs and optimize network
performance.

The usage of load balancing and queuing mechanisms to
improve network performance is not a new concept. Nonethe-
less, classic approaches of the former such as Equal-Cost
Multi-Path (ECMP), which evenly splits traffic across dif-
ferent routes, and traditional mechanisms of the latter such
as Weighted Fair Queuing (WFQ), which schedules traffic
based on pre-selected weights per flow, have been shown to
be extremely limited in efficiency. As a result, reliance started
to grow on adaptive and machine learning-based approaches
to these two tasks.

In the case of load balancing, deep learning mechanisms,
such as Relnforcement Learning NETworking (RILNET) [1],

grew in pertinence. RILNET, a model-free actor-critic algo-
rithm, uses deep function approximators to develop contin-
uous action space policies. This centralized framework uses
Maximum Link Utilization (MLU) as basis for its reward,
and assumes its actor and critic have complete knowledge of
the network. Nonetheless, RILNET does not count for SLA
requirements or any Quality-of-Service (QoS) constraints.

In the case of queue management, several adaptive queuing
and active queue management techniques [2] have been shown
to be capable of sustaining certain delay and throughput
requirements. The automatic adaptation of queuing parame-
ters, such as the weights in Adaptive Weighted Fair Queuing
(AWFQ) [3]-[5], improves network performance. However,
these mechanisms function at the level of individual routers,
without any cooperation or communication towards globally
improving the QoS.

In our work, we propose a joint smart load balancing and
queue management approach. As in traditional routers, the
two algorithms work in cascade. Nonetheless, in our approach,
they are based on deep learning mechanisms. Specifically, in
order to develop these traffic engineering agents, we utilize
a subset of machine learning known as graph convolutional
reinforcement learning. The latter models the network nodes
as the vertices of the graph and its links as the edges. This
modeling encapsulates inter-node relationships and suits the
general network structure, enabling thus the reduction in inter-
agent communications. We consider both a typical SD-WAN
scenario and a generalized network topology and deal with a
set of classified network flows divided, following their prior-
ity, into three groups: gold, silver, and bronze, representing
traffic such as real-time, business, and bulk, respectively. Our
objective is twofold: first, we aim to use deep learning agents
to select the best paths for the flows across the network, and
second, based on the priority of these routed flows, we use
another set of agents to determine how they are queued and
dequeued at network routers.

Furthermore, we discuss how the load balancing and smart
queuing agents learn. Their states, actions, rewards, and the
used methods for inter-agent cooperation are detailed next.
We build our proposals in a Mininet testbed [6], and perform
packet-level simulations in both SD-WAN and classic network
topologies. We show that our proposals scale well and that they
outperform classic approaches such as ECMP and traditional
weighted fair queuing in terms of maximum throughput and
minimum delay. Finally, we discuss the overhead incurred due
to inter-agent communications and show that the reduction in

inter-agent communications, as a result of the neighborhood-
based cooperation mechanisms of the used learning approach,
leads to insignificant signaling loads.

Section II of this paper describes the related works in the
state-of-the-art. Section III discusses the system architecture,
including our SD-WAN use case. Section IV introduces the
graph convolutional reinforcement learning-based algorithm
that we used for both our smart queuing and smart load bal-
ancing agents. Section V details our approach to the smart load
balancing problem including the considered actions, states,
and rewards. Section VI details our smart queuing proposal
and the queuing approach it is built upon. Finally, Section VII
presents the simulation results and analysis, while Section VIII
concludes this paper.

II. RELATED WORKS

In this section, we take a glimpse at the state-of-the-art in
relation to load balancing and queue management in networks.
Load balancing (LB) aims at better managing and distributing
traffic in networks according to heterogeneous and dynamic
requirements and has been the focus of much research and
investigation in the academic and industrial worlds.

One of the most widely used strategies in LB is ECMP [7],
a routing strategy where packet forwarding to a single desti-
nation can occur over multiple best paths with equal routing
priority. ECMP splits flows evenly over candidate paths be-
tween origin (source) and destination pairs. It suffers when
confronted with bursty traffic and in the presence of ele-
phant flows. Uneven flow splitting across multiple paths, like
in Unequal Cost Multi-Path routing (UCMP), improves the
performance slightly but does not resolve issues with long-
term optimization for load balancing when traffic patterns are
unknown and hard to forecast or predict.

Even if network calculus or queuing models can estimate
latency, packet loss, and jitter, the associated models remain
quite complex and difficult to integrate in global load balanc-
ing solutions. Model-free reinforcement learning approaches
have been proposed as a promising solution to optimize
parameters such as Quality of Experience (QoE) [8] and
MLU, as well as correctly predicting future conditions. For
these reasons, some previous works such as RILNET [I1]
integrate Reinforcement Learning (RL) in their approach. The
RL algorithm used in RILNET is Deep Deterministic Policy
Gradient (DDPG) [9], which is a model-free, off-political
actor-critic algorithm that uses deep function approximators
that can learn policies in continuous action spaces. The reward
used in the agent learning phase is the MLU.

The RL algorithms have also been extended from one to
multiple agents (MARL) that work together to seek the best
decision that maximizes the desired reward through interaction
with the environment. MARL [10] algorithms can rely on
centralized control, where a central unit periodically makes a
decision for each agent; or decentralized control, where each
agent makes its own local decisions. Agents can also work
cooperatively to achieve a common goal, or they can compete
with each other to maximize their own reward.

A relevant paper for smart load balancing is DGN [11],
even if its focus is on the more general routing problem in
networks. DGN proposes a multi-agent cooperation algorithm

based on convolutional graph reinforcement learning suitable
for capturing the dynamics of the multi-agent environment
underlying graph. The proposed DGN routing solution aims
at finding the next hop, hop-by-hop, for packets at each router
from the origin to the destination while avoiding congestion.
The considered protocol is based on a distributed decision at
each router in order to optimize the average delay of data
packets. The packet-based routing results obtained by DGN
are found promising compared with traditional techniques,
and thus motivate our interest in using DGN to realize load
balancing on flows rather than packets for dynamic end-to-end
path selection.

Existing traffic engineering approaches focus on the network
performance and do not take into account the intents of users.
In [12], the authors introduce an intent-based load balancing
approach that can take users’ intent, such as commercial cost,
into consideration. Houidi et al. [13] use graph convolutional
reinforcement learning to propose a QoE-based load balancing
algorithm. Their approach models the network as a graph and
derives, through a graph convolutional method, a policy that
splits video traffic flows across end-to-end candidate paths
while meeting application QoE requirements.

In this context, we propose in this paper to apply DGN
philosophy to design a smart load balancing and queuing
protocol. However, in our work, we will not adopt the same
hop-by-hop prediction policy used in [11] (where data packets
are the agents). Rather, our model will be based on the path
between the origin and the destination routers. The paths are
pre-calculated using the shortest path method, and DGN will
be applied to load balance between the selected paths by
estimating the percentage of the flow for each path.

The main objective is to find the load balancing weights
that determine the path (among candidate paths) for every
incoming flow. The ultimate goal is to optimize QoS by lever-
aging only network-level KPIs and deriving the probabilities
for path selection. For this reason, we identify the combination
of network metrics necessary to design an efficient reward
function that maximizes the QoS. We show that by selecting
flow delivery delay and throughput measurements, we can
improve the QoS compared with ECMP.

For the state-of-the-art on Smart Queuing (SQ) and the
utilization of Deep Reinforcement Learning (DRL) in network
management, Kim et al. [14] propose a Deep Q-Network
(DQN) based Active Queue Management (AQM) scheme to
reduce queuing delay in fog/edge networks. Their proposal
relies on DRL techniques for efficient queue management to
handle latency and trade-off queuing delay with throughput,
while maintaining QoS in terms of low jitter. It is compared to
other RL-based solutions and shown to outperform the other
methods in terms of delay and jitter while maintaining above-
average throughput and being an efficient network congestion
manager.

A reinforcement learning based approach, via an index
policy for bursty load management, is proposed by Balasub-
ramanian et al. [15] to improve average wait times and over-
saturation in the queues. RL is shown here also to provide
benefits and improvements compared with non-RL solutions.
The work of Liao et al. [16] addresses the scheduling of flows
in Multi-Path TCP (MPTCP), with a focus on short and long

MPTCP flows, and also uses RL to improve performance
compared with traditional traffic scheduling methods. The
proposed DDPG-based DRL framework determines how to
distribute the packets over multiple paths while decreasing
the out-of-order queue size under such paths. It reduces the
gap between the faster and slower paths. The RL model is
solved via an actor-critic framework and transformer encoders
to process the states of dynamic sub-flows for the deep neural
networks (in the actor and critic networks).

Furthermore, all these previous works conduct evaluations
based on simulations, while this paper implements and eval-
uates MARL-based load balancing algorithms in a real-world
testbed. To the best of our knowledge, we are the first to
propose an RL-based system that considers two reference use
cases: Smart Load Balancing (sLB) combined with an SQ
mechanism to provide an intelligent routing architecture based
on an intelligent network architecture design and collaboration
between agents using an attention-based technique [17]. Our
algorithm is used to guide online packet load balancing
decision-making to achieve intelligent routing and smart queu-
ing in the entire network.

Additionally, in contrast to the majority of the existing
works, our proposal was also evaluated and validated using
larger-scale networks alongside a testbed framework. Com-
pared with the best state-of-the-art distributed and centralized
software-defined networking solutions, our algorithm improves
SLA satisfaction. Our proposed model is adaptable and sup-
ports different topologies, traffic distribution scenarios, and
network scales.

III. SYSTEM ARCHITECTURE

We consider a semi-distributed architecture where edge
devices are controlling traffic based on real-time measurements
using local agents sharing certain information with their peers.
The agents are centrally trained, but their execution is done in a
distributed manner. In this section, we detail the architecture of
the SD-WAN use case that we focus on, and the general node
architecture in which our agents are built. In the simulation
and results section, we also discuss the implementation of our
proposal in a more generalized network topology.

Figure 1 presents a typical SD-WAN use case where an en-
terprise network headquarters (HQ) and three remote branches
are interconnected by the numbered nodes and through Access
Routers (ARs) located at the branches. Flows issued by user
applications are grouped into flow groups that correspond
to traffic classes with different SLA requirements. A typical
traffic scenario includes gold, silver, and bronze groups for
multimedia, business critical, and non-critical applications,
respectively.

The system architecture is split into two control entities. In
the first control entity, traffic engineering and load balancing
policies are taken. In the second control entity, AR devices
take tactical decisions to follow the evolution of traffic and
network conditions. Figure 2 depicts the architecture of AR
devices. The decisions are taken in cascade. The traffic of each
flow group is first load balanced over available access networks
using a routing agent. Afterwards, a scheduling engine at each
port (each access network link), controlled by a QoS agent,
applies a QoS policy, i.e., the WFQ-based RL approach we

=i

Head Quarters

@‘0

i)

88
DO
OlaLfe

Figure 1: SD-WAN based network topology

Control Plane

Routing Agent

Smart Load Balancing

QoS Agent

Smart Queuing

Measurements
« Per flow
« Per path

Path selection
« Split ratios.

Scheduling
+ WFQ weights

Scheduling
Engine

Figure 2: Access router architecture

Monitoring /
Telemetry

Forwarding
Engine

Data Plane

describe later on. The monitoring block provides information
on the network at path and flow group levels such as jitter,
delay, and throughput metrics, some of which are factored
into our deep learning decision-making.

Our objective is twofold. First, we want to use deep learn-
ing, specifically graph convolutional reinforcement learning, to
load balance the flows on the different available paths in the
network. Secondly, we aim to satisfy SLAs for the same set
of classified network flows. In particular, we aim at meeting
performance targets for each flow group in terms of minimum
throughput and maximum end-to-end delay.

Finally, we note that in addition to our SD-WAN use case,
we also test our proposal in a more generalized network
topology, namely based on the ION-NY network topology.
We show that our learning models are resilient to different
topologies and can scale well.

IV. GRAPH CONVOLUTIONAL REINFORCEMENT
LEARNING FOR MULTI-AGENT SYSTEMS

In the case of smart load balancing, the agents are placed
at source nodes. In the case of smart queuing, the HQ nodes
also have embedded agents. In our work, we use graph
convolutional reinforcement learning, or DGN, to dictate the
relationship between agents and how they learn. The latter

models the network as a graph G = (V,E), where its
nodes are represented by the agents, and its vertices by the
links connecting them. Every agent i, ¢ € N, possesses a
set of neighboring agents with which it can communicate
and exchange information. We use the existence of direct
links between agents as the main factor in determining the
adjacency. An adjacency matrix C defines which agents are
neighbors, and as such, which agents will exchange infor-
mation throughout training and execution. This reduces inter-
agent communications and its costs in terms of signaling and
complexity.

Multi-agent environment. Each agent ¢ will run its own
DRL algorithm. In the case of smart load balancing, it aims
to learn how to distribute the loads across the different paths.
In the case of smart queuing, it seeks to determine the best
weights per flow group (w¢,w?,w?). During each time
iteration ¢, the agents receive local observations of. In the
case of load balancing, they consist of throughput metrics.
In the case of smart queuing, the latency per flow class is also
factored in. Observations from neighboring (communicating)
agents, impact how the agents learn and their decision-making
as well. As a result of these observations, an action a§ is taken,
and a reward r! is issued.

In Figure 3, we show the composition of the DRL agents.
They are formed from three main modules. The first module
is an encoder comprised of a multi-layer perceptron (MLP).
As input, the encoder takes the set of local observations of the
agents o! and outputs the relevant features f?. Each agent i
will share its relevant features with its neighbors as input to
the second module.

The second module is composed of convolutional layers.
Each of these layers takes as input the output of the previous
layer from its own agent, and from other communicating
agents as well. The convolutional layers are used to further
extract relevant features among neighbors. Multiple convolu-
tional layers can be used. The number of convolutional layers
in the module could be likened to distance-vector routing
and determines the distance at which communicating agents
could be placed in the network graph while still being able to
exchange relevant information from the entire network. That is
to say, even if an agent does not communicate with all agents
in the network, the communications with its neighbors enable
it to obtain a full view of the topology.

The third and final module in the agent composition is a
Q-network. It takes as input a vector of features from the
convolutional module and outputs the action to be taken. As
in classic deep Q-learning, the objective is to take the decisions
which maximize the expected reward.

Attention. DGN implements attention mechanisms through
convolutional kernels. Initially used in Convolutional Neural
Networks (CNNs) for image and pattern recognition and
extraction, these kernels enable the integration of features in
the receptive fields of the agents to extract latent features.
They enable learning how to quantify the relationship between
agents and the integration of their respective features. DGN
uses a multi-head dot-product convolutional kernel to compute
the different interactions among agents. A more illustrated
discussion on how attention works in neural networks can be
found in [17].

\

aj : af '
))

E Q-Network ‘ . Q-Network '

(G ' VNN ;

el ol
2 Q_T ftl ,\i><if11 L)

w1} : — L L e
i é i i

.
.
t
' ' o}
' ' 3 '
.

o

Agent 3

'
'
i

.

Figure 3: Structure of two communicating DGN agents

Replay buffer. We use an experience (replay) buffer in our
work. Experiences are stored and afterwards randomly selected
for training. This reduces the risk of correlated data. These
samples are formed as (0,A,0",R,C), where O is the set
of agent observations {o1,...,0n}, A is the group of agent
actions {aj,...,an}, and O is the set of new observations
{0}, ..., 0’y } resulting from these actions. R represents the re-
wards issued to the agents {ry,...,ry}, and C = {C4,...,Cn}
is the collection of adjacency matrices for the agents. The
latter define the neighborhoods for the agents, and indicate
with which agents each agent is able to communicate. We
dropped the time index ¢ from these expressions for the sake
of simplicity.

Agent training. Alongside graph convolutional reinforce-
ment learning, we enlist the aid of a classic deep learning tool
in the usage of a target network [18]. The latter stores a copy of
the main Q-network of the agents. Nonetheless, the parameters
in this case are not trained but slowly updated using the main
network’s parameters. A random minibatch of size S is used
to train the agents with the objective of minimizing the loss:

N
L) = % 23: % Z}y ~Q0ic.ai0))®. ()

Recall that N is the total number of agents and that
yi =i +ymax Q0] ¢, a; 0"). 2)

O;,c € O represents the observations of ¢’s neighbors.)
is the Q-function, 6’ represents the parameters of the target
network, and +y is the discount factor, which weighs the impact
of future rewards. The gradients of the loss of all the agents are
accumulated and used to update the main network parameters.
The target network parameters are smoothly updated every
training iteration as:

0 =710+ (1-1)¢, 3)

where 7 represents the smoothness of the update. When 7=1,
the update is considered to be “hard” and the parameters of
the main network are directly cloned onto the target network.

V. DGN BASED SMART LOAD BALANCING

In this section, we discuss the states, actions, and rewards
associated with our deep reinforcement learning approach to
load balancing in networks.

« The states are the amount of traffic (average throughput)
and the number of active flows on each outgoing path
(route). We use one agent for each Origin-Destination
(OD) flow. For the policy decisions, each agent is posi-
tioned at the source node and decides about load balanc-
ing weights for the L paths towards the destination.

o The actions in our case are the load balancing weights
for each OD flow. Each time a new flow arrives, the
path is selected accordingly. Due to the discrete nature
of RL algorithms, we choose to discretize the decision-
making process for the agents: at each time step/period
P a new policy will be selected by the agent and will
be applied during the entire time step P: each new flow
arriving between the current time ¢ and ¢ + P will follow
the same policy (z.e., set of load balancing weights). We
explore the use of QoS metrics collected in the network
as an alternative to QoE-based DRL methods. The latter
assume that full access to clients and applications on the
endpoints or terminals is readily available and can be
collected to monitor the evolution of the reward at every
iteration.

« Equation 4 presents the reward expression considered and
used for SLB comparisons in the performance evaluation.

R = Throughput — X\ X ¢(s,a))

where c(s,a) = |Referencepeiay — Current pejay (s, a)|
As shown in Equation 4, we introduce a constrained
reward expressions that penalize decisions if the expe-
rienced flow delivery delay violates a tolerable delay
bound, called the Reference Delay (arbitrarily set to
0.5s in our case). Recall that our goal is to use only
network KPIs in the smart load balancing algorithms
to intelligently distribute traffic to optimize QoS. The
constrained rewards use parameter A to penalize the
algorithms if flow delivery delays violate target SLAs.
While algorithms like RCPO [19] can be implemented to
find optimal values of)\, in our case, we performed an
iterative search for simpler implementation.

VI. DGN BASED SMART QUEUE MANAGEMENT

For the smart queuing part of our joint approach, DRL
and specifically graph convolutional RL, is used to aid a
WEFQ scheduler placed at key nodes in the network. Weighted
fair queuing is used to sustain fairness. The weights of the
scheduler can be modified and flow groups would receive
bandwidth allocation in proportion of their weights. These
weights would also impact the end-to-end latency experienced
by the flow groups. Let {1,..., K} represent the flows. In a
WEFQ scheduler, each of them achieves an average rate Ry
equal to:

Ri = ——R, 5)

Dim1 Wi
where R represents the overall capacity of the link, and wy, is
the weight of flow k. The larger the weight of a flow is, the

more bandwidth it is allocated and the lower its latency is.

We assume that every flow in the network can be classified
into one of three groups. These groups are: gold, silver, and
bronze in descending order of importance. Each has a set
of minimum throughput thresholds to be respected: T, T,
and T, for gold, silver, and bronze, respectively and an upper
limit of maximum end-to-end delay values to be sustained:
dg, ds, and dp. The QoS agents aim to meet these constraints
by continuously updating the weights for each group of flows
served. Each agent is built on top of a WFQ scheduler. While
we use the latter in our work, we believe that our learning
model is generic enough to handle any other scheduling
architecture. The agents require observations in terms of the
throughput and end-to-end delays of the flow groups. Based on
these observations, each agent will take a decision on whether
to increase or decrease the weight of each group of flows it
serves.

The set of observations, actions, and rewards are detailed
as follows:

o The local observation is a tuple containing the end-to-
end throughput and delay values of the flows served by
the served gold flows, and dT] is their average end-to-end
delay, and so on for the rest of the classes. The end-to-end
delays are measured using in-band network telemetry.

« Each agent takes the action of either increasing or de-
creasing the weight of each flow group by a constant
value d. At each time step ¢, each QoS agent will change
all the weights of the flow groups it is serving (£ 9).
With three flow groups being considered, that is a total
of eight different actions that could be taken.

e« As a result of the action taken, each agent receives
a reward that reflects its contribution to satisfying the
throughput and delay requirements for the flow groups.
We denote 7; be the reward for meeting the throughput
thresholds of flow group j, and ¢; its end-to-end delay
equivalent. The reward r; issued for a certain action is as
such calculated as:

Wil g +wi-dg+wl ne+wl-dg+wi mpwi - gy, (6)

where w§h is equal to -1 if the throughput threshold for

7 is violated and +1 otherwise. wl? is its equivalent for
the end-to-end delay constraints. As a result, the reward
could be a negative value, i.e., a penalty.
The rewards/penalties for meeting the thresholds for the gold
flows are higher than those for the silver, and for the silver
flows higher than those for the bronze. The agents are better
rewarded, and in turn more harshly penalized, for meeting (or
violating) the requirements for the gold flows, than they are
for the silver and bronze flows, respectively. Additionally, the
rewards for the delay thresholds with respect to the throughput
can be weighted. For instance, we configure ¢, = k414 If K,
< 1, the agents will aim to meet the throughput thresholds
ahead of the delay ones.

Finally, in a continuous space such as weight selection, it is
important to introduce discrete states. We start by defining
the observation space size. We set the latter to 20 in our
work, meaning that there are 20 different possible values for

each element of the observation. Afterwards, we calculate
the window size as the maximum value for each element
of the observation sextuplet minus the minimum value for
said element. Finally, we calculate the discrete observation
as the integer ratio of the actual observation value minus the
minimum value, with the result being divided by the calculated
window size.

We note that there is an inversely proportional relationship
between the size of the state space i.e., the total number
of possible values the observation can take, and the time
needed for convergence. Nonetheless, the former should be
large enough to give the algorithm sufficient room to explore.

VII. SIMULATION AND RESULTS

In this section, we detail a set of simulations and results
with the objective of highlighting the efficiency of our joint
proposal. We start by introducing the emulator we used in
our work, and afterwards discuss the training of the agents,
the considered network topology, and the benchmarks used
to assess our proposals. Finally, we demonstrate that our
joint approach is scalable and discuss the overhead that our
proposals impose.

A. Emulation and Traffic Generation Environment

We used Mininet to test our proposed algorithms. Mininet
provides a virtual testbed and development environment for
Software-Defined Networks (SDNs). Mininet enables SDN
development on any processor, and SDN designs can move
seamlessly between Mininet and the real hardware running at
line rate in live deployments [6]. Mininet enables:

Rapid prototyping of software-defined networks

« Complex topology testing without the need to wire up a
physical network

Multiple concurrent developers to work independently on
the same topology

SDN Application
SDN Application

Controller
Controller I

Emulated Network Hardware Network

Figure 4: The Mininet stack

Figure. 4, illustrates how Mininet works. It creates a realistic
virtual network, running real kernel, switch, and application
code. Alongside Mininet, we use the Distributed Internet
Traffic Generator (D-ITG) to generate traffic [20]. D-ITG
is a platform capable of producing traffic at packet-level
accurately, replicating appropriate stochastic processes for
both inter departure time and packet size random variables
(Exponential, Uniform, Cauchy, Normal, Pareto, and others).

B. SD-WAN Scenario

We start by considering the topology shown in Figure 1.
Each node at the branches (1, 2, 4, 5, 7, 8) has an attached
source of traffic. Only edge nodes have agents attached to
them. For DGN, nodes with a link are considered neighbors
and can communicate. For the SQ approach, the agents can
communicate with the headquarters node as well (12).

Table I: Simulation parameters for the SD-WAN scenario

Parameter Value

6 with 18 different flows
Mixed UDP-TCP

3000, 1200, 500 Kbps
0.2/0.5/1 seconds

variable 20-50 Mbps per link
900-1200 packets/second

512 Bytes

Number of O-D pairs
Transport protocol

SLA Throughput G/S/B flows
SLA Delay G/S/B flows
Link BWs

Transmit rate per source
Packet size

Table II: Parameters for SQ DGN agents

Parameter Value

N of neighbors 3

N¢ of convolutional layers 2
Reward relative to flows G/S/B 3z /2z/x
N¢ attention heads 8

N°¢ of encoder MLP layers 2

N° of encoder MLP units (128,128)
Target network update rate 7 0.01
Discount factor ~y 0.99
Training batch size 32

Table III: Parameters for sSLB DGN agents

Parameter Value
N° of neighbors 3

N¢ of convolutional layers 2

N¢ attention heads 8

N°¢ of encoder MLP layers 2

N° of encoder MLP units (128,128)
Target network update rate 7 0.01
Discount factor ~y 0.99

Training batch size 32
Policy refreshing period (time period) 10 s

Traffic scenario. Table I shows the simulation parameters
for the SD-WAN scenario. The transmit rate of the sources
follows diurnal and sinusoidal patterns between 900-1200
packets/second. The simulations are done as a series of snap-
shots, the duration of each being 10 seconds. The duration is
enough to achieve a steady state for TCP in our topology, and
it has no impact on the results. The agents are queried for new
weights at the same frequency of 10 seconds. It is important
that the policy refresh rate is not significantly lower than the
rate at which the traffic varies. As we verify later on in the
simulations, increasing the frequency of agent querying does
not incur any great costs in communication. The delay metric
considered is the average end-to-end delay for flow groups.

Benchmarks. We consider three different simulation cases.
The first is smart load balancing alongside smart queuing
(our two DGN based approaches). The second is smart load
balancing alongside classic WFQ with fixed weights relative

to the reward values, and the third is smart load balancing
alongside FIFO queue management.

Training of agents. Tables II and III detail the parameters
for the smart queuing and smart load balancing DGN agents,
respectively. When choosing these sets of hyper-parameters,
the objective is to create the smallest neural network capable of
addressing the problem. Each of these learning models needs
its hyper-parameters tuned. For instance, the DQN algorithm’s
performance would degrade if it had one fully connected layer
instead of two, but it wouldn’t improve if it had three. These
parameters were set intuitively following models in the state-
of-the-art and through testing. The exploration rate ¢ dictates
how often during training we take random actions, and how
often we utilize the trained model.

1) Smart load balancing and queue management: We first
consider the double learning approach. The parameters for
the DGN agents are listed in Tables II and III. Figure 5 has
the results in terms of throughput per flow class. The dashed
lines show the throughput requirements. We note that the joint
approach is able to meet all the requirements. For the gold
flows, it shows a minimum value close to 3050 Kbps, for the
silver flows a median close to 1300 Kbps and for the bronze
flows at around 600 Kbps. All above the requirements.

We additionally look at the results in terms of the end-to-
end delay. Figure 6 has the results. With the requirements set
at 0.2/0.5/1 seconds for gold/silver/bronze flows, we note that
we are able to satisfy all the requirements. With median gold
flow delays well below 0.1 seconds, and bronze median delay
values at around 0.85 seconds.

I
4000f | 1

3500 [

2 3000 -~ -== - == e
Q
€]
5 2500 B 1
<
(=2
3 2000 = -
£ =
= +
1500 - |- I
— —
1000 1
—
500 F=——r------- e P e e EEEES
SQG WFQG SQS WFQS SQB WFQB

Figure 5: sLB and SQ vs sLB and WFQ: throughput results.
The removal of SQ leads to violations in gold flows’ through-
put results.

2) Smart load balancing with WFQ: We substitute the
smart queuing with a classic weighted fair queuing approach.
The weights are chosen following the importance of the flows
in proportion to the reward values used as input to the smart
queuing learning approach before. Although aided with the
help of the smart load balancing approach, removing the SQ
approach in this case prevents us from meeting the set require-
ments. Figures 5 and 6 have the results for the throughput and

0.9} - 1
08 E‘ 1
L
T
0.7t T 1

o
o)
T
I

o
o
T

},
},

End to end delay (seconds)
i
il
{lH

o
o
T

[+
H T H
11

SQG WFQ G sQs sQB WFQ B

Figure 6: sLB and SQ vs sLB and WFQ: delay results. The
removal of SQ leads to violations in gold flows’ delay results.

delay, respectively. In both cases, the requirements for the gold
flows are severely violated. For the throughput, the median
value is about 2500 Kbps well below the requirements, with
violations recorded in more than 75% of the cases. For the
delay values, there are violations in about 20 % of the cases
for the gold flows.

3) Smart load balancing with FIFO: Finally, we addition-
ally replace the SQ part with classic first in, first out (FIFO).
The objective of this experiment was to highlight the need for
queue management when we have an SLA objective to meet,
and show that the network we considered on its own is unable
to sustain the requirements for all the flow types. Figure 7 has
the throughput results. We note that all the gold flow results
are in violation of their requirements. Similarly, for the delay
results shown in Figure 8, we note that more than half the
gold flows show delay violations.

C. Scalability

We aim to address the scalability of our joint proposal. As
such, we consider a scenario based on the ION-NY topology
from the topology zoo dataset (Figure 9). The network has
125 nodes. We consider 20 hosts connected to like numbered
nodes. 17 of them are transmitting and three are acting as
receiving ends. The hosts are spread out to count for different
cases and possible impacts. Sending hosts are placed at nodes
such as s0, s1, s9, s40, s41, s100, etc, and the receiving hosts at
nodes s4, s44, and s114. The parameters for the DGN agents
are the same as in the previous scenario. Only edge nodes
have agents attached. Table IV has the simulation parameters
for this scenario.

We compare our joint learning approach (smart load bal-
ancing alongside smart queuing) to the case where smart load
balancing is replaced with ECMP, with SQ still present on the
ports. We look at the results in terms of throughput and delay.

For the throughput results, seen in Figure 10, we note that
the joint learning approach is able to meet the throughput
requirements for all flow classes. It shows a minimum value

2600 - ‘
|

2400 | i
I

2200 - !

Kbps)
S
S

1800 - b

1600 [

Throughput
=
S

1200 [
1000 [

800 -

B
B+ o+ 4+

Gold Silver

Bronze

Figure 7: sLB and FIFO throughput results. Removal of SQ
removes any aspect of intelligent queuing causing significant
violations in gold flow throughput requirements.

0.3 ‘ 1

i
I
—~0.25¢ }
I
|

] S e e —

0.151 7

0.1r]

End to end delay (seconds

|
|
R — R — 4

Silver Bronze

Figure 8: sLB and FIFO delay results. Complete removal of
SQ causes significant violations in gold flow delay require-
ments.

Table IV: Simulation parameters for the large-scale scenario

Value

17 with 51 different flows
Mixed UDP-TCP

3000, 1200, 600 Kbps
0.2/0.5/1 seconds

variable 20-80 Mbps per link
1200-1400 packets/second
512 Bytes

Parameter

Number of O-D pairs
Transport protocol

SLA Throughput G/S/B flows
SLA Delay G/S/B flows
Link BWs

Transmit rate per source
Packet size

higher than 3000 Kbps for the gold flows, and a median value
close to 1500 for the silver ones. Violations are recorded for all
the ECMP-based flows, with almost all the bronze flows being
in violations and more than 60 % of their gold counterparts
as well.

For the delay results, in Figure 11, with ECMP alongside
smart queuing, only the gold delay requirements are met.

Figure 9: ION network topology

3500 -

3000 [---——------ D ——

2500 4

Throughput in kbps
S
S5

a

o

o
T

1000 - 8

s | E—

sLBG ECMP G sLBS ECMP S sLB B ECMP B

Figure 10: Smart load balancing vs ECMP in the presence of
SQ: throughput results. Removal of sLB reduces throughput.

However, we record violations in about 30 % of the silver
flows and similarly for the bronze flows. Our joint learning
approach can meet all the set requirements.

D. Communication Overhead

During the execution phase, the agents need to communicate
their feature vectors i.e., the output of the convolutional layers.
While the size of inter-agent communications is usually of
concern in distributed learning approaches, we aim to prove
that it is not an issue with our proposals. We determine
the incurred overhead using two methods. First, in order
to quantify the overhead involved, as proposed in [21], we
compute it as a function of the total number of pairs of agents
that communicate during a certain time instance ¢ € 7', denoted
gt, and the total number of agent pairs R as:

T
_ Zt:1 gt

p RT

)

T O A A S
508r ‘ b
] | |
(0] | i
2] |
c L
Zo06f 1
o
I = e
° L T 4
S
2 e -
©
T e

oFf ﬁ E I jr N

sLBG ECMPG sLBS ECMPS sLBB ECMPB

Figure 11: Smart load balancing vs ECMP in the presence of
SQ: delay results. Removal of sLB increases latency.

If the value of this ratio is close to zero, it means the overhead
is negligible. On the other hand, if the value is close to 1, it
means all agents communicate with each other i.e., equivalent
to a full mesh. In the case of the SD-WAN scenario, the ratio
is about 0.35 for our smart queuing approach and 0.09 for
the load balancing algorithm. In the case of the large-scale
network topology, it is less than 0.16 for smart queuing and
about 0.07 for load balancing. This indicates a very small
overhead and communications limited to where needed.

We also assessed the overhead in terms of bandwidth
required. In DGN, the agents exchange latent features. Let m
be the number of convolutional layers, that is also the number
of messages to be exchanged every time a decision needs to
be taken. The agents are queried every 10 seconds to send
s.m bits, where s is the size of the message. To estimate
the load: consider a scenario where we have 2 convolutional
layers, m = 2. We have 128 nodes in the convolutional
layers, which output a message of dimensions (1x128). We
need 4 bytes to encode a float, that is a total of 512 bytes
per message. On each link, for the communications between
two agents, we are thus exchanging messages at the rate of
((512 * 8 bits) * 2 layers)/10s = 0.8192 Kbps. Even as
the number of convolutional layers or communicating agents
increases, we can note that the bandwidth needed to exchange
messages between different agents remains quite limited.

VIII. CONCLUSION

In this paper, we proposed a joint smart load balancing
and smart queuing approach for networks. We utilized a
subset of deep learning known as graph convolution deep
reinforcement learning to model the different agents as nodes
of a network-representing graph. We compared our joint
algorithms to classical methods such as Equal-Cost Multi-Path
for load balancing and traditional Weighted Fair Queuing for
queue management, and showed that our proposals improve
throughput and end-to-end delay and are better suited to meet
service level agreements. Finally, we computed the overhead
required for our algorithms to function during their execution

phase and showed that the utilized attention mechanisms and
neighborhood policies keep this overhead at a minimum.

REFERENCES

[11 Q. Lin, Z. Gong, Q. Wang, and J. Li, “RILNET: A Reinforcement
Learning Based Load Balancing Approach for Datacenter Networks,”
in Machine Learning for Networking - First International Conference,
MLN 2018, Paris, France, November 27-29, 2018, ser. Lecture Notes in
Computer Science, vol. 11407, 2018, pp. 44-55.

[2] R. Adams, “Active queue management: A survey,” I[EEE Communica-
tions Surveys Tutorials, vol. 15, no. 3, pp. 1425-1476, 2013.

[3] T. Frantti and M. Jutila, “Embedded fuzzy expert system for adaptive
weighted fair queueing,” Expert Systems with Applications, vol. 36,
no. 8, pp. 11390-11397, 2009.

[4] A. Sayenko, T. Hdmildinen, J. Joutsensalo, and L. Kannisto, “Com-
parison and analysis of the revenue-based adaptive queuing models,”
Computer Networks, vol. 50, no. 8, pp. 1040-1058, 2006.

[5] M.-F. Homg, W.-T. Lee, K.-R. Lee, and Y.-H. Kuo, “An adaptive
approach to weighted fair queue with QoS enhanced on IP network,” in
Proc. IEEE TENCON, vol. 1, 2001, pp. 181-186.

[6] K. Kaur, J. Singh, and N. S. Ghumman, “Mininet as software defined
networking testing platform,” in International Conference on Commu-
nication, Computing & Systems (ICCCS), 2014, pp. 139-42.

[7]1 C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” RFC
2992, November, Tech. Rep., 2000.

[8] O. Houidi, D. Zeghlache, V. Perrier, P. T. A. Quang, N. Huin, J. Leguay,
and P. Medagliani, “Constrained Deep Reinforcement Learning for
Smart Load Balancing,” in 2022 IEEE 19th Annual Consumer Com-
munications & Networking Conference (CCNC), 2022, pp. 207-215.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,

D. Silver, and D. Wierstra, “Continuous control with deep reinforcement

learning,” in 4th International Conference on Learning Representations,

ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, 2016.

A. Oroojlooyjadid and D. Hajinezhad, “A Review of Cooperative Multi-

Agent Deep Reinforcement Learning,” ArXiv, vol. abs/1908.03963,

2019.

J. Jiang, C. Dun, T. Huang, and Z. Lu, “Graph Convolutional Re-

inforcement Learning,” in 8th International Conference on Learning

Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

OpenReview.net, 2020.

P. T. Anh Quang, S. Martin, J. Leguay, X. Gong, and X. Huiying,

“Intent-based routing policy optimization in sd-wan,” in ICC 2022 -

IEEE International Conference on Communications, 2022, pp. 4914—

4919.

O. Houidi, S. Bakri, and D. Zeghlache, “Multi-Agent Graph Convo-

lutional Reinforcement Learning for Intelligent Load Balancing,” in

NOMS 2022-2022 IEEE/IFIP Network Operations and Management

Symposium, 2022, pp. 1-6.

M. Kim, M. Jaseemuddin, and A. Anpalagan, “Deep reinforcement

learning based active queue management for iot networks,” Journal of

Network and Systems Management, vol. 29, no. 3, pp. 1-28, 2021.

V. Balasubramanian, M. Aloqaily, O. Tunde-Onadele, Z. Yang, and

M. Reisslein, “Reinforcing Cloud Environments via Index Policy for

Bursty Workloads,” in NOMS 2020, 2020, pp. 1-7.

B. Liao, G. Zhang, Z. Diao, and G. Xie, “Precise and Adaptable:

Leveraging Deep Reinforcement Learning for GAP-based Multipath

Scheduler,” in Proc. IFIP Networking, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc.

NeurlPS, 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski

et al., “Human-level control through deep reinforcement learning,”

Nature, vol. 518, no. 7540, pp. 529-533, 2015.

C. Tessler, D. J. Mankowitz, and S. Mannor, “Reward constrained policy

optimization,” 2018.

S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre, “D-itg

distributed internet traffic generator,” in First International Conference

on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceed-

ings. 1EEE, 2004, pp. 316-317.

S. Q. Zhang, Q. Zhang, and J. Lin, “Efficient communication in multi-

agent reinforcement learning via variance based control,” Advances in

Neural Information Processing Systems, vol. 32, 2019.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

