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Abstract—With over 75 billion Internet of Things (IoT) devices
expected worldwide by the year 2025, inaugural MAC layer
solutions for long-range IoT deployments no longer suffice.
LoRaWAN, the principal technology for comprehensive IoT
deployments, enables low power and long range communications.
However, synchronous transmissions on the same spreading
factors and within the same frequency channel, augmented by
the necessary clustering of IoT devices, will cause collisions
and drops in efficiency. The performance is further impacted
by the shortage of radio resources and by multiple operators
utilizing the same unlicensed frequency bands. In this paper, we
propose a game theoretic based channel selection algorithm for
LoRaWAN in a multi-operator deployment scenario. We begin
by proposing an optimal formulation for the selection process
with the objective of maximizing the total normalized throughput
per spreading factor, per channel. Then, we propose centralized
optimal approaches, as well as distributed algorithms, based on
reinforcement learning and regret matching dynamics, to finding
both the Nash and Correlated equilibria of the proposed game.
We simulate our proposals and compare them to the legacy
approach of randomized channel access, stressing their efficiency
in improving the total normalized throughput as well as the
packet delivery ratios.

Index Terms—LoRaWAN, Game Theory, Nash Equilibrium,
Correlated Equilibrium, Learning

I. INTRODUCTION

LoRaWAN is the one of the principle IoT technologies
in the unlicensed radio band. It aims to provide low-cost,
large-scale, and ultra-durable connectivity. It is designed to
allow low-powered devices to communicate with the access
network over long-range wireless connections. Transmission
is possible on selected channels with the usage of spread-
spectrum modulations derived from the chirp spread spectrum
(CSS) technique. A collision will occur when two or more
devices select, at the same time, the same channel and the
same spreading factor (SF). Such collisions are inescapable
due to the use of Aloha-based random access and the scarcity
in radio resources. This shortcoming is further magnified by
the cohabitation of multiple LoRaWAN operators leading to a
massive deployment of LoRa devices. To limit the interference
on the industrial, scientific, and medical (ISM) license-free
band, LoRaWAN transmissions are restricted to a 1% duty
cycle, but this solution is not enough to curtail inter-network
interferences.

In this work, we address the scalability issues of LoRaWAN

by astutely apportioning the traffic of various operators over
the available channels. We propose a game for channel assign-
ment in a multi-operator LoRaWAN deployment. We portray
the channel allocation problem as a non-cooperative game
among selfish but rational operators, each seeking to improve
its own normalized Aloha throughput. We show that the
game possesses a potential function. As a result, a pure Nash
equilibrium (NE) can be attained using either repeated best
response or replicator dynamics. In particular, our replicator
dynamics learning-based algorithm is completely distributed
and avoids signaling burdens, allowing thus for a prolonged
device battery life.

We additionally investigate the correlated equilibrium (CE)
of our game proposal. A CE is a concept that is more general
than an NE. It is the idea that each player of the game
will choose their action according to their observation of a
public signal shared among all players [1]. Roger Myerson, an
economics Nobelist and game theory expert, wrote “If there
is intelligent life on other planets, in a majority of them they
would have discovered correlated equilibrium before Nash
equilibrium”. The CE is a relevant solution for non-cooperative
games, and it is a particularly interesting one as it is much
easier to obtain than its Nash counterpart and sometimes even
results in better payoffs.

As with our approach in finding the NE, we introduce both
centralized and distributed approaches to computing the CE.
First, we use linear optimization for computing the correlated
equilibrium as well as for finding the social welfare CE, a
Pareto optimal solution. Second, we use regret matching–a dis-
tributed learning mechanism–to find the CE in a decentralized
manner. We study our different approaches to computing the
NE and the CEs and compare them to the concurrent method
for LoRaWAN channel selection.

The remainder of this work is structured as follows: sec-
tion II includes the related works from the state-of-the-art.
In section III, we detail our system model. We introduce our
optimal formulation for channel assignment in section IV and
our non-cooperative game proposal for channel selection in
section V. After proving its existence, we propose a repeated
best response algorithm for finding the NE in section V-D, as
well as a distributed learning based algorithm with the same
purpose in section V-E. We introduce the notion of correlated



equilibrium in section VI, propose an optimal method of
finding it in section VI-A, and a learning based algorithm to
compute it in section VI-C. Simulations and results are shown
in section VII. This paper is concluded with section VIII.

II. RELATED WORKS AND CONTRIBUTIONS

A lot of papers in the state-of-the-art discuss the capabilities,
as well as limitations, of LoRa and LoRaWAN networks.
In [2], the authors address the scalability of LoRaWAN by
implementing the legacy approach using an ns3 simulator.
They conclude that downstream traffic degrades the packet
delivery ratio and that increasing the number of gateways can
improve performance. The article in [3] illustrates that while
adaptive data rate (ADR) SF selection reduces IoT device
power consumption, it deters the scalability of LoRaWAN.
In [4], the authors put forward a monitoring system for
LoRa architecture. They use a smart gateway to study the
performance of LoRa under multiple scenarios. Finally, in [5]
the authors assess the impact of ISM interference on the
bit error rate. They establish a signal-to-interference ratio
threshold after which the impact of narrow-band interference
becomes minimal.

Many articles in the state-of-the-art have proposals aimed
at improving the resilience, efficiency, and overall scalability
of LoRaWAN networks. They do so by focusing on a range
of LoRaWAN features and aspects. The majority of these
works as in [6]–[8], focus on spreading factor assignment
algorithms beyond the legacy approaches proposing ideas
based on decision trees, interference-awareness, and device
radio conditions, respectively.

While not as common in the state-of-the-art, other ap-
proaches tackle LoRaWAN problems from the perspective of
the ISM channels. In [9], the authors propose a lightweight
scheduling algorithm wherein the devices choose the channels
they transmit on based on what they deem to be best. They
show via simulations that in a single cell scenario with 1000
nodes, their proposal can reduce the packet error ratio of the
legacy LoRaWAN by 20%.

In [10], the authors propose a channel control scheme
for LoRa networks. Their objective is to balance the traffic
loads across all available channels lowering thus the amount
of collisions. They claim that their algorithm outperforms
traditional and state-of-the-art proposals in dense deployment
scenarios.

The authors in [11] propose a scheduling algorithm to im-
prove the scalability of LoRaWAN. Their algorithm schedules
the spreading factors, frequency channels, and the timeslots
for the wireless links connecting end-devices and gateways.
They compare their proposal to the Aloha access scheme and
highlight its advantages.

Finally, in [12], the authors study a Multi-Armed Bandit
proposal for channel assignment in LoRaWAN. Their exper-
imental results show that each IoT device selects a channel
based on a reinforcement learning approach that aims to
improve the packet delivery rate.

In our work, we simulate multiple co-located network op-

erators unlike the vast majority of the state-of-the-art, wherein
papers consider single operator deployments [3], [6], [7], [9],
[11], [13]. As we are dealing with competing operators, we
propose a game theory based channel selection algorithm to
load balance the traffic. The different operators are the players
of our game. Our proposal for channel assignment does not
require device intelligence as in [9], [12] and can as such be
implemented on all LoRa device classes. Furthermore, it is not
based on classical scheduling as in [11], an unrealistic ask of
LoRa networks which are limited to a 1% duty cycle.
We highlight our main contributions:
(a) We introduce an algorithm, based on non-cooperative

game theory, for channel selection in a multi-operator
LoRaWAN setting. We show that the game possesses
a potential function and thus admits both Nash and
Correlated equilibria.

(b) We simulate a semi-distributed approach, based on best
response dynamics, for finding the NE. Additionally, we
propose a reinforcement learning approach to finding the
NE in a distributed manner.

(c) We propose centralized and distributed algorithms for
finding the CE. Using linear optimization, we introduce
an approach for finding the social welfare CE, a Pareto
optimal solution. Using regret matching, we propose a
learning algorithm to find the CE in a distributed manner.

(d) We simulate our different algorithms and compare them
to the legacy state-of-the-art approach, highlighting the
gains they achieve with respect to the latter and to each
other.

III. SYSTEM MODEL AND SPECIFICATIONS

In our model, we assume the presence of multiple Lo-
RaWAN deployments, each belonging to a different operator.
Every LoRaWAN deployment i ∈ N has N i IoT LoRa
nodes and ri gateways. The gateways for each LoRaWAN
deployment are coincident and set at the same locations. The
IoT devices are spread over a square shaped zone as shown
in Fig. 1.

The IoT nodes attempt to transmit packets at a rate λi.
These attempts are done following a Gaussian distribution. Ts
is the time required to transmit a packet of size l on SF s.
LoRa supports SFs ranging from 7 to 12. The SFs institute a
trade-off between device coverage and data rate. SF7 results
in the highest data rate but at the shortest distances. The SFs
are assumed to be orthogonal. Packets which are transmitted
during the same time frame but on different spreading factors
can be successfully received. LoRa utilizes forward error
correction to detect and correct transmission errors with the
coding rate set to 4/(C+4) where C ∈ {1,2,3,4}. Table I
shows how the data rate, sensitivity and the SNR thresholds for
reception vary as a function of the spreading factors utilized
within the 868 MHz band for C = 1.

LoRaWAN is the upper layer protocol for LoRa. It uses a
star topology. Each network deployment will connect to its
own network server using one hop communications, where all
the gateways forward the packets to the server. An example



Table I: LoRa Technology in the 868 MHz band

SF Data Rate [kbps] Sensitivity [dBm] SNR [dB]

7 5.458 -123 [-7.5,∞[
8 3.125 -126 [-10,-7.5[
9 1.757 -129 [-12.5,-10[
10 0.976 -132 [-15,-12.5[
11 0.537 -134.5 [-17.5,-15[
12 0.293 -137 [-20,-17.5[
φ 0 Not covered <-20

architecture of this network can be seen in Fig. 2.
LoRaWAN uses pure Aloha for channel access. The duty

cycle for LoRa within the ISM band is limited to d=1%.
The rate of packet generation should as such verify λTs≤d.
Multiple frequency bands are supported by LoRaWAN within
the unlicensed ISM bands of 433, 868, and 915 MHz. The
868 MHz band is used in Europe alongside the 125, 250, and
500 kHz bandwidth channels.

Area Side Length S [km]

Figure 1: A 2 gateway 4 LoRaWAN scenario

LoRa

Gateway

4G/Ethernet

Network Server

End Device

Figure 2: LoRaWAN architecture

In Fig. 3, we show a network stack of a typical LoRa node.
The latter can be divided into three classes based on how often
they are listening for updates:
• Class A: Consuming the least amount of energy, these

devices wake up to send a packet and afterwards listen
for a short duration of time.

• Class B: Moderate on energy consumption, these devices
have regularly scheduled listening windows.

• Class C: Causing maximum energy consumption, these
types of devices are always listening.

Unlike the vast majority of the state-of-the-art proposals for
channel management in LoRaWAN, our proposals do not
require any additional signaling with respect to current class
A specifications. The LoRa devices can simply receive a
notification with their channel assignment during their receive
windows. Finally, Table II has a summary of the notations
concerning our system model.

Applications

LoRaWAN (MAC)

LoRa Technology (PHY)

ISM Band

Class A Class B Class C

Figure 3: LoRa node network stack

Table II: Notation Summary

Notation Definition

λi Rate of device packet generation in network i
λesc External traffic on channel c and spreading factor s
Ts Time needed to transmit a packet on SF s
l Packet length in bytes
d Duty cycle
N i

s Number of covered nodes that can using SF s for operator i
Gsc Total normalized traffic load on SF s and channel c
N Set of operators
C Set of available channels
T Total normalized throughput

IV. OPTIMAL PROBLEM FOR CHANNEL SELECTION

In our work, we simulate a set of co-located operators. The
devices belonging to each operator use one of the available
channels of the set C. The normalized channel traffic load per
SF, and per channel, Gsc is defined as:

Gsc = λesc · Ts +

N∑
i=1

xci (λ
i ·N i

s · Ts), (1)

where xci is a binary variable that is equal to one if network
operator i is using channel c, and zero otherwise. With the
success rate, per SF and per channel, being expressed as



exp(−2Gsc) following the Aloha protocol, the total normal-
ized channel traffic load for a certain network i, Gisc, can be
defined as:

Gisc = xic(λ
i ·N i

s · Ts). (2)

The total normalized throughput in the network is as such:

T =

N∑
i=1

C∑
c=1

S∑
s=1

Gisc exp(−2Gsc). (3)

The global optimal formulation to maximize the total normal-
ized throughput through channel allocation, given a predefined
SF selection process, can thereafter be written as:

Maximize
xi
c

N∑
i=1

C∑
c=1

S∑
s=1

Gisc exp(−2Gsc) (4a)

Subject to
C∑
c=1

xic ≤ 1, ∀i ∈ N , (4b)

xic ∈ {0, 1} ∀i ∈ N ,∀c ∈ C (4c)

(4a) is the objective of the optimal problem: to maximize
the total normalized throughput in the entire system. The
constraints in (4b) and (4c) enforce that a network operator
chooses a particular channel c to utilize for transmissions.

Unfortunately, the optimal problem in its current state can
only be solved using a centralized entity. The latter has to have
all the information on all the different LoRa devices regardless
of which operator they belong to. With the IoT devices and
gateways belonging to different operators, it is unrealistic to
expect different network operators to share the such sensitive
data. In what follows, we study, assess, and solve the problem
at the operator level.

V. MULTI-OPERATOR GAME FOR CHANNEL SELECTION

Our objective is to utilize non-cooperative game theory
to formulate an algorithm for channel assignment in multi-
operator LoRaWAN networks. Each network seeks to se-
lect the channel(s) that maximizes its own normalized total
throughput. The different network operators, i.e., the players
of our game proposal, are competing for seemingly contra-
dicting objectives. As such, non-cooperative game theory is
well adapted to channel selection in multi-operator LoRaWAN
deployments.

A. Game Formulation
We define a multi-player game G among the different

network operators present. The formulation of this game
G = 〈N ,

∏
i Si, Ui〉 can be described as follows:

• A finite set of players i ∈ N , the set of operators.
• The action of a certain player is the channel chosen, the

strategy chosen by an operator i is then xi = (xi1, ..., x
i
C),

indicating whether it utilizes channel c or not.
• For each player i, the space of pure strategies is Si, such

that Si = {xi ∈ {0, 1}C | (4b), ∀c = 1, ..., C}.
• A set of utility functions (Ui∈N ) that quantify the play-

ers’ profit for a given strategy profile.

B. Player Utilities

Each player, or operator, seeks to maximize greedily the
total of its own normalized throughput. The utility Ui for every
player is formulated as:

Ui =

C∑
c=1

S∑
s=1

Gisc exp(−2Gsc) (5)

where exp(−2Gsc) is the success rate per SF and per channel
for all the different co-located operators, and Gisc represents
the traffic load for network i. The former can be determined
by the operators through packet acknowledgments, while the
latter is computed using the network’s knowledge of its own
devices and their transmission rates. Each player is greedily
seeking to maximize its own normalized throughput.

C. Existence of a Nash Equilibrium

In game theory, the players aim to find a solution to which
they all adhere. The latter is known as a Nash equilibrium
(NE) [14]. An NE represents a profile of player strategies
wherein no player can take advantage of the others by chang-
ing its own strategy in a unilateral fashion. As such, the
primary task in game theoretics is to put froward algorithms
capable of reaching such equilibrium. A classical, and yet
simple, approach to computing the NEs is known as the
repeated best response dynamics: each player will select its
locally optimal strategy in reply to the other players, until the
dynamic response algorithm converges. In what follows we
aim to prove that an NE exists for our game.

For simplicity, we denote wis = λi ·N i
s · Ts. The utility of

a player i can then be expressed as:

Ui =

C∑
c=1

S∑
s=1

xic ·wis ·exp(−2(wis+
∑
j 6=i

xjc ·wjs+λesc ·Ts)). (6)

Lemma V.1. Our game proposal is exact potential.

Proof. To verify that an NE exists for this game, we assume
j ∈ N and define the vector of functions ~φ of elements φs
such that:

φs = −
∑
j

∑
c

xjc∑
j x

j
c

· exp(−2(
∑
j

xjc ·wjs +λesc ·Ts)). (7)

We additionally define the vector ~αi of elements αis such that:

αis = wis ·
exp(−2wis)

1− exp(−2wis)
, (8)

and the value lsc, the load of all the networks except i:

lsc =
∑
j 6=i

wjs · xjc. (9)

We aim to compute the value ~αi ·~φ(xi,x−i)−~φ(x
′i,x

′−i)·~αi
to prove that it is essentially the difference in the payout
resulting from player i changing its decision alone from
channel c to channel c′. x−i is the strategy of all other players
different than i.

~αi · ~φ(xi,x−i)− ~αi · ~φ(x
′i,x

′−i) =



−
∑
j

∑
s

αis ·
xjc∑
j x

j
c

· exp(−2(lsc + wis + λesc · Ts))

−
∑
j

∑
s

αis ·
xjc′∑
j x

j
c′

· exp(−2(lsc′ + λesc′ · Ts))

+
∑
j

∑
s

αis ·
xjc∑
j x

j
c

· exp(−2(lsc + λesc · Ts))

+
∑
j

∑
s

αis ·
xjc′∑
j x

j
c′

· exp(−2(lsc′ + wis + λesc′ · Ts))

= −
∑
s

αis · exp(−2(lsc + λesc · Ts))(exp(−2wis)− 1)

+
∑
s

αis · exp(−2(lsc′ + λesc′ · Ts))(exp(−2wis)− 1)

=
∑
s

(1− exp(−2wis))

(1− exp(−2wis))
·
(
wis
[

exp(−2(lsc +wis + λesc · Ts))

− exp(−2(lsc′ + wis + λesc′ · Ts))
])

=
∑
s

(
wis
[

exp(−2(lsc +wis +λesc ·Ts))

− exp(−2(lsc′ +w
i
s+λesc′ ·Ts))

])
= Ui(x

i,x−i)− Ui(x
′i,x

′−i) (10)

As a potential function exists for our proposed game,
pure Nash equilibrium exist and best response dynamics are
guaranteed to converge [15]. We prove, via simulations, their
efficiency in terms of total normalized throughput and packet
delivery ratio.

D. Best Response to Computing the Nash Equilibrium

As we proved that our proposal possesses a potential func-
tion, pure NEs exist and we can attain them using repeated best
response dynamics. We implement a best response approach
where in every iteration tg , a network i seeks to find its locally
optimal channel selection as a response to x−ic (tg − 1), the
decisions of other operators, by solving the following problem:

Maximize
xi
c

Ui(x
i,x−i) (11a)

Subject to

xic ∈ {0, 1} ∀i ∈ N ,∀c ∈ C (11b)

The best response algorithm we proposed can be seen in
Algorithm 1. The approach requires less than 5 iterations
to converge. In order to solve the optimization problems in
our work, we made use of mixed integer disciplined convex
programming from CVX [16], a Matlab based optimization
tool. CVX itself, in this instance, uses branch and bound to

Algorithm 1 Game for Channel Selection

1: Requires: Maximum tolerance ε ← 10−5

2: Input: Initial channel assignment
3: Initialize: tg = 0
4: Do
5: tg←tg+1
6: For i=1,. . . ,N
7: Solve the problem in (11) for i
8: Update channel selection
9: Compute δi = ||xic(tg)− xic(tg − 1)||

10: End For
11: While ∃ i such that δi ≥ ε

get the optimal solution.
While the best response algorithm represents a comprehensive

semi-distributed approach to computing the NE, we are also
interested in a completely distributed approach that limits the
need for major signaling or inter-operator cooperation.

E. Distributed Learning-based Approach to Computing the
Nash Equilibrium

We aim to use reinforcement learning, namely replicator
dynamics [17], to help solve the problem in a distributed
manner. Because our game possesses a potential function, we
know that replicator dynamics will converge to a pure Nash
equilibrium [18]. Let pic(t) be the probability that network
i utilizes channel c for transmissions. The sum of all the
probabilities is equal to 1, for each network i i.e,

∑
c∈C p

i
c(t) =

1 ∀ i ∈ N , ∀ t. At t = 1, the beginning of the learning process,
all possible channel selections have equal probabilities. At
every time step t, the network chooses a particular channel
based on the probabilities draw, and is subsequently issued
a reward. Following this reward, the probability of choosing
the same channel in a subsequent time slot is updated. The
probabilities of channel selection are updated after every
selection as follows:

pic(t+ 1) =

{
pic(t) + βR(1− pic(t)), if θic = 1
pic(t)− βRpic(t), otherwise (12)

θic maps between a channel selection and an operator. It
is equal to one if network i chooses channel c, and zero
otherwise. β is the learning rate, selected between 0 and 1,
and R is the reward. The reward will quantify how good the
channel choice was and is equal to the normalized throughput
of the network on the utilized channel (T ic ), divided by a
theoretical upper bound for that same throughput Tmax.

The learning rate β defines the speed with which the algo-
rithm converges towards a channel decision for the different
network operators, as well as the efficiency of this decision.
A large value of β would lead to quicker decisions, but
might not converge towards the Nash equilibrium leading to
inefficient decisions. Ideally, we aim to select the largest value
of β that would certainly converge towards an efficient Nash
equilibrium. While we settle on a value of β through trials, we
know it is efficient because our proposal does indeed converge



to a Nash equilibrium.
In order to compute the reward, each network needs to be

able to estimate the packet delivery ratio (success rate) at its
gateways. We assume that each network knows its own number
of devices, and their packet generation rates. After utilizing a
channel for a certain amount of time, a network can generate
an estimate of the success rate per spreading factor on the
channel. For instance, if it has 1000 devices transmitting at the
rate of one packet per hour, it expects to receive 1000 packets
one hour after utilizing a given channel c. If it receives 600,
then the success rate is 0.6. The larger the waiting period,
the more accurate this estimation is. However, we show via
simulations that any error in estimation does not prevent the
algorithm from reaching a pure NE for the different operators.
The pseudo-code for the learning approach can be seen in
Algorithm 2.

Algorithm 2 Learning the NE

1: Requires: Set of states S, actions A, and rewards R
2: Input: Learning rate β ∈ [0,1]

3: Initialize: pic(1)← 1

C
, ∀ i ∈ N

4: Do
5: t←t+ 1
6: For i=1,. . . ,N
7: Select a channel following pic(t)
8: Network i utilizes the selected channel enough
9: time to estimate the success rate per SF

10: Compute R = T ic/Tmax
11: For c ∈ C
12: If θic== 1
13: pic(t+ 1)← pic(t) + βR(1− pic(t))
14: Else
15: pic(t+ 1)← pic(t)− βRpic(t)
16: End If
17: End For
18: End For
19: Until ∃ c ∈ C such that pic(1) ≈ 1, ∀ i ∈ N

VI. CORRELATED EQUILIBRIUM

A correlated equilibrium, introduced by Aumann
(1974) [19], is the game theory notion wherein each
player of the game receives a private signal that does not
affect the payoff of their decisions. The players of the game
then choose their actions based on this signal. When the
players have no motives to change their decisions, knowing
that the other players would not, they arrive at a correlated
equilibrium. From a practical point of view, the correlated
equilibrium is the most relevant non-cooperative solution
for a game [1]. By definition, every Nash equilibrium is a
correlated equilibrium. What makes the latter so interesting is
that they are much easier to obtain [20] and can sometimes
result in better payoffs than their Nash counterparts.

In our work, we examine three different approaches,
centralized and distributed, for finding the correlated

equilibrium. The first, the social-welfare method, is a Pareto
optimal linear programming method aimed at maximizing the
objective function. The second method, which we refer to as
the general CE, is an optimization problem aimed at finding
the equilibrium without the social-welfare constraints. Note
that both of these problems output globally optimal solutions.
And thirdly, we propose a distributed learning approach to
finding the CE, known as matching-regret, where players may
depart from their current play with probabilities proportional
to measures of regret for not having used other strategies in
the past.

A. Social-Welfare Correlated Equilibrium

Our objective in this linear programming approach is to
find an efficient correlated equilibrium which maximizes the
normalized throughput of the players (operators). Let ai and
a′i be two strategies of the set of pure strategies for player i,
denoted Ai. Let A=(Ai, A−i) be the global strategy profile.
Finally, let p(a) be the probability of choosing the profile a.
P = (p(a)a∈A) ∈ ∆A, the set of the probability distributions.
P is a form of recommendation for each player and is a CE
if it holds that:∑

a∈A|ai∈a

p(a)Ui(a) ≥
∑

a∈A|ai∈a

p(a)Ui(a
′
i, a−i)

∀i ∈ N , ∀ai, a′i ∈ Ai. (13)

The intention behind this condition is that for every player
i, the payoff for its strategy ai in certain general profile of
strategies a ∈ A, with a certain probability p(a), remains
higher than the payoff of any other individual action it might
take. As such we can formulate the linear optimal problem for
computing a social-welfare CE as:

Maximize
p(a)

∑
a∈A

p(a)
∑
i∈N

Ui(a) (14a)

Subject to∑
a∈A|ai∈a

p(a)Ui(a) ≥
∑

a∈A|ai∈a

p(a)Ui(a
′
i, a−i),

∀i ∈ N , ∀ai, a′i ∈ Ai, (14b)
p(a) ≥ 0 ∀a ∈ A, (14c)∑
a∈A

p(a) ≤ 1. (14d)

Equation (14a) has the objective of the problem, that aims
to increase the probabilities of the strategy profiles which
maximize the social-welfare. Constraints (14c) and (14d) are in
relation to the probability distribution, where the probabilities
need to be positive and sum up to one. Finally, the social-
welfare maximizing correlated equilibrium is Pareto optimal
as illustrated in [21].

B. General Linear Problem

A more general approach to computing the correlated equi-
librium drops the social-welfare constraints. This increases the
size of the candidate set of correlated equilibria, but might



at the same time lead to less efficient solutions. The linear
optimal problem to compute the CEs can be reformulated as
follows:

Maximize
p(a)

∑
a∈A

p(a) (15a)

Subject to∑
a∈A|ai∈a

p(a)Ui(a) ≥
∑

a∈A|ai∈a

p(a)Ui(a
′
i, a−i),

∀i ∈ N , ∀ai, a′i ∈ Ai, (15b)
p(a) ≥ 0 ∀a ∈ A, (15c)∑
a∈A

p(a) ≤ 1. (15d)

We note that linear programs are easy and straightforward to
solve in practice. We again used CVX to solve this problem.

C. Matching Regret

In this section, we implement a distributed learning algo-
rithm to find the correlated equilibrium, known as the matching
regret [1]. In essence, each operator i at a certain instant t,
makes a decision of choosing a given channel c according to
a certain probability. This is dubbed its strategy. Afterwards,
it computes its regret i.e., the difference in payoff it would
have received had it made a different decision. Following this
regret, it updates its probability of making the same choice in
the subsequent time slot.

Given the history of play, we suppose that each player
(network) i ∈ N chooses a strategy at+1

i ∈ Ai according to a
probability distribution pia(t) ∈ ∆Ai. For every two strategies
a and a′ ∈ Ai of player i, suppose that the latter was to replace
the former every time it was played in the past. The payoff at
time τ , τ < t, would become:

W τ
i (a, a′) =

{
Ui(a

′, aτ−i), if aτi = a
Ui(a

τ ), otherwise (16)

where aτi is the strategy of player i at time τ . The resulting
difference in the average payoff up to time t can thereafter be
expressed as:

Dt
i(a, a

′) =
1

t

t∑
τ=1

W τ
i (a, a′)− 1

t

t∑
τ=1

Ui(a
τ )

=
1

t

∑
τ≤t:ati=a

[Ui(a
′, aτ−i)− Ui(aτ )]. (17)

Finally, let

Rti(a, a
′) = [Dt

i(a, a
′)]+ = max{Dt

i(a, a
′), 0}, (18)

be the regret player i experiences at time t for choosing
strategy a instead of a′. The probabilities of choosing a given
strategy are then updated as follows:{

pia′(t+ 1) = 1
µR

t
i(a, a

′), ∀a′ 6= a

pia(t+ 1) = 1−
∑
a′∈Ai:a′ 6=a p

i
a′(t+ 1), otherwise

(19)

where µ is a number chosen large enough to ensure conver-
gence. The probability of switching strategies is then propor-
tional to the regret the player experiences when selecting them.
After the algorithm converges, at time slot t the distribution of
the N-tuples of strategies played up to time t can be expressed
as:

zt(a) =
1

t
|{τ ≤ t : aτ = a}|. (20)

That is to the say the final probability of player i selecting a
strategy a is the percentage of times it was played throughout
the process. The pseudo-code for the process can be seen in
Algorithm 3.

In the context of our matching regret proposal for finding
the correlated equilibrium, it is important to highlight the
following:
• The value of µ is chosen to be greater than 2Mi(mi−1)
∀ i ∈ N , where Mi is an upper bound for |Ui(.)| and mi

is the number of strategies of player i (in our case the
number of channels it can choose). Convergence of the
algorithm is not guaranteed for smaller values of µ.

• If every player i plays according to the procedure illus-
trated in Algorithm 3, the latter is guaranteed to converge
towards the set of CE as t → ∞ [1].

• In regards to the complexity of the matching regret
proposal, at each iteration, every player performs one
table lookup to calculate its utility. They also perform
two additions and two multiplications to update the regret
value, and one random number draw, one multiplication
and one comparison to calculate the next strategy.

Algorithm 3 Learning the CE

1: Requires: Set of states S, actions A, and rewards R
2: Input: µ > 0
3: Initialize: pia(1), ∀ i ∈ N , ∀ a ∈ Ai
4: For t=1,. . . ,T
5: t←t+ 1
6: For i=1,. . . ,N
7: Select an action (channel) following pia(t)
8: Compute the regret according to (18)
9: Update the probability distributions such that

10: For a,a′ ∈ Ai
11: If a′ 6= a
12: pia′(t+ 1) = 1

µR
t
i(a, a

′)
13: Else
14: pia(t+ 1) = 1−

∑
a′∈Ai:a′ 6=a p

i
a′(t+ 1)

15: End If
16: End For
17: End For
18: End For

D. Complexity With Respect to Nash Equilibrium

As we showed in section VI-A, computing the correlated
equilibrium requires solving a problem with a linear objective
and linear constraints. Intuitively speaking, the correlated
equilibrium has only a single randomization over outcomes



and its problem is as such solvable in polynomial time.
However, the NE is constructed as a product of independent
probabilities [22]. If we want to solve the same problem for
the Nash equilibrium, the constraint in equation (13) becomes:∑

a∈A
Ui(a)

∏
j∈N

pj(aj) ≥
∑
a∈A

Ui(a
′
i, a−i)

∏
j∈N\{i}

pj(aj)

∀i ∈ N , ∀ai, a′i ∈ Ai. (21)

This constraint is non-linear, and as such the optimal problem
for finding a Nash equilibrium becomes a mixed integer non-
linear program, which could become extremely difficult to
compute as the number of variables increases.

VII. SIMULATIONS AND RESULTS

Through simulations, we aim to test our algorithms and their
effectiveness in different scenarios. Unless specified otherwise,
the parameters are as shown in Table III. Using a Matlab-
based environment, we simulate four co-located operators. The
number of devices per operator is ascending and equal to 750,
1000, 1250, and 1500, respectively. The traffic per device is
also different per network and increases from 1 packet per
hour to 4, for operators 1 to 4, respectively. We simulate
our channel selection algorithm, solved for different equilibria
through multiple approaches, alongside the traditional adaptive
data rate spreading factor selection approach. We compare it to
the average result of a randomized channel selection process,
plotted in the results alongside a 99.99 % confidence interval.
In the simulation results, the best response approach to com-
puting the NE is labeled “NE”, and the general approach to
computing the CE is labeled “CE”. The learning approach to
finding the NE is labeled “RL NE”, while the Regret Matching
and Social Welfare approaches to finding the CE are referenced
by their names.

Table III: Simulation Parameters

Parameter Value

Number of operators 4
Number of LoRa devices per operator [750,1000,1250,1500] (4500 total)
Number of available channels 3
Number of gateways per operator 2
Network layout Square with side S = 8 km
Path loss model Okumura-Hata Model
Spreading factors SF 7-12
Tx power 14 dBm
Carrier frequency 868 MHz
Gateway height 30 m
Device antenna height 1.5 m
Packet generation rate per network λi [1,2,3,4] packets/hour
Packet length 50 Bytes

A. Impact of Packet Size

In this section, we assess the impact ot the packet size on
the performance of our proposals. As such, we simulate our
algorithms for the packet lengths l of: 10, 20, 30, 40, and
50 bytes. Figure 4 has a plot illustrating the resulting total
normalized network throughput for our different proposals as
a function of the packet size.

Figure 4 (a) compares between random channel selection
and the social welfare CE. The latter outperforms random
selection regardless of the packet size with total normalized
throughput values between 0.36 and 0.8, compared to average
values between 0.34 and 0.71 for random selection. The gap
between the upper and lower bounds of the confidence interval
for the random selection process increases with the packet
size, resulting in higher possibilities for inefficient choices. In
Fig. 4 (b), we plot the results for the NE, attained via the
best response algorithm, and the CE, attained via the linear
optimization problem. The two approaches attain near identical
results, with the CE ever so slightly outperforming its Nash
counterpart.

We additionally compare between the different approaches
in terms of the total packet delivery (success) ratio. Figure 5
has the results. In Fig. 5 (a), we show the gains of the
game theoretic approach, solved for the NE via repeated best
response dynamics, with respect to random channel selection.
For the former, the packet delivery ratio decreases as the
pack size increases with values between 0.82 and about 0.75.
Randomized channel selection always produces lower packet
delivery ratios. In Fig. 5 (b), we notice that though small, the
performance gap between the NE and the CE is more visible
with the latter producing success rates higher by about 1% for
l=10 bytes, and 0.5% at l=50 bytes.

B. Impact of the Area Size

In this section, we study the impact of varying the simula-
tion area size on the performance of our game proposal and
its different equilibrium finding solutions. The area side length
S is varied between 2, 4, 8, 12, and 16 km. Figure 6 has the
results in terms of the total normalized throughput.

First, in Fig. 6 (a), we compare again between random
channel selection and the regret matching approach to finding
the CE. The latter always outperforms the former with ascend-
ing values ranging from about 0.25 for S=2 km to a maximum
close to 1 at S=12 km. The performance of the game approach,
solved for the CE, decreases afterwards. This increase and
decrease in the total normalized throughput is in relation to
the ADR spreading factor selection process. When the area
size is small, the density of the devices on the lower SFs
is increased and collisions thereafter increase, reducing thus
the total normalized throughput. When the area size is very
large, the radio conditions of the devices degrade reducing thus
their throughput capabilities. Inversely to before, the size of
the confidence interval decreases with the increase in the area
size, indicating that it is harder to make inefficient decisions.

In addition, we aim to assess the cost in efficiency (for the
total normalized throughput) for computing the NE and the CE
via the proposed distributed learning algorithms. Figure 6 (b)
has a box plot showing the difference in total normalized
throughput between the game solved for the NE via repeated
best response to the NE computed via the learning proposal.
We notice that the difference is insignificant with maximum
normalized throughput losses in the vicinity of 0.25 %. As for
the CE, Fig. 6 (c) has a box plot showing the difference in the
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Figure 4: Impact of packet size on the total normalized throughput
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Figure 5: Impact of packet size on the total packet delivery ratio
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Figure 6: Impact of the area size on the total normalized throughput
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Figure 7: Impact of the area size on the total packet delivery ratio

payoff for the CE solution solved using the linear problem to
the case where it is computed via the regret matching learning
algorithm. As with the NE, learning the CE does not incur any
significant losses. The box plot shows a maximum difference
close to 0.45 %. We are thus able to solve the game in a
decentralized manner without a loss in efficiency.

We further study the impact of this variation in the area
size on the total packet delivery ratio. The results can be
seen in Fig. 7. In the plot of Fig. 7 (a), we once again
show that our game proposal can significantly outperform
randomized channel selection in terms of total packet delivery
ratio. Similar to before, the delivery ratio increases from 0.45
at S=2 km to a maximum close to 0.75 at S=12 km. It starts
to drop afterwards. In Fig. 7 (b), we compare between the NE
solution and the corresponding social welfare CE. With little
room for improvement considering the scenario, the optimality
of the social welfare approach can still be noted. The latter
always produces better packet delivery ratios regardless of the
area size.

C. Impact of an Increase in the Number of Available Channels

We increase the number of available channels, from which
the network operators can choose, from 3 up to 8, the
maximum allowed under LoRa and ISM band specifications.
In each simulation, each added channel has 10% more ex-
ternal traffic. This means that some channels will be more
loaded than others. Figure 8 has the results in terms of total
normalized throughput and the total packet delivery ratio.

An increase in the number of possible choices, especially
in the case of crowded channels, will lead random channel
selection to make more erroneous decisions, increasing thus
the size of the confidence interval. Figure 8 (a) shows that
the gains of our game proposal, solved for the social welfare
CE, become more pertinent. The plot shows that the total
normalized throughput produced by the corresponding NE is

always above 0.81, whilst the average random approach payoff
remains capped below 0.74.

In Fig. 8 (b), we plot the difference in the resulting
normalized throughput between the NE, solved via repeated
best response, and the social welfare CE. After the throughput
improves when the number of channels is increased from three
to four, the payoff for the social welfare CE remains constant
no matter the number of channels available after that. This
proves that the social welfare CE is indeed Pareto optimal.
On the other hand, the throughput resulting from the NE
fluctuates over a small margin depending on which NE the
problem lands on. As in the previous simulations, the social
welfare approach to computing the CE leads to slightly higher
normalized throughput values than its NE counterpart.

Finally, in Fig. 8 (c) we look at the performance of our
game proposal in terms of the total packet delivery ratio. The
plot compares between the social welfare CE and randomized
channel selection. The former fairly outperforms the latter with
the total packet delivery ratio for the CE capped at 0.755.

D. Energy Consumed per Delivery

We want to study the average energy expended per success-
ful delivery in our considered scenario. For this simulation,
we change side length S of the square area and compare
between our reinforcement learning (RL) NE proposal and the
randomized approach. Following [23], the energy cost of data
delivery can be expressed as:

ECdelivery ≈
a · exp(2Gsc)

lpay
, (22)

where a is the energy expended per packet transmission
attempt, Gsc is the total normalized traffic load per SF, per
channel, and lpay is the payload size. The results are shown
in Fig. 9.

The results show that our learning proposal always con-
sumes less energy per delivered byte, in comparison to the
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Figure 8: Impact of increasing the number of channels on performance
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Figure 9: Energy per byte as a function of S

randomized approach. Unsurprisingly, the least energy expen-
diture for the learning algorithm came at S=8 km when it
produced the highest packet delivery ratio.

E. Comments on the Results

In this paper, we proposed both centralized and distributed
approaches to computing both the NE and the CE of our
game theoretic proposal for channel selection in multi-operator
LoRaWAN scenarios. In line with the simulation results, we
highlight the following:
• Both the NE and the CE solutions for our games pro-

duce similar results in terms of the resulting normalized
throughput.

• Both our NE and CE solutions provide better results
with respect to random channel allocation, the currently
utilized method for LoRaWAN, in terms of throughput,
packet delivery ration, and energy efficiency.

• The Social Welfare CE produces, ever so slightly, the best
results in terms of throughput and packet delivery ratio
as well. Its main drawback is that it needs to be solved
for in a centralized manner.

• Generally speaking, and as shown in the paper, the CE is
easier to attain than the NE. The usual drawback is that
the CE space is larger and less constrained. This could
lead to less favorable solutions. However, as attested for
by the results, this is not the case for our game.

• The choice of one method over the other thus comes
down to preference and ease of implementation. If a
centralized server is available, the Social Welfare CE
would be preferred. In case of non-cooperative operators,
a learning approach to finding the NE would be more
suited.

• Finally, our comparison to a randomized approach shows
the significance of our NE and CE proposals. They
are optimal, or near-optimal, solutions that could be
sometimes attained with concurrent approaches, but in
most cases would not be.

VIII. CONCLUSION

In this paper, we proposed a game theory based algo-
rithm for channel selection in a multi-operator LoRaWAN
deployment. We solve for its Nash equilibrium via repeated
best response dynamics, and through a distributed learning
algorithm as well. In addition, we propose both a centralized
optimal algorithm and a distributed regret-matching based
learning approach for finding a Correlated equilibrium for
the game. The latter is a more general and a mathematically
easier method to obtain solution for the game. We compare
and contrast between the two concepts and highlight, via
simulations, the gains they achieve with respect to concurrent
approaches to channel selection.
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