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Abstract—Faced with the limitations of the Aloha random
access scheme and spread spectrum techniques, LoRaWAN is
yet to realize its potential as the flagship technology for large-
scale Internet of Things applications. LoRaWAN allows for low
power and long range communications. Nonetheless, concurrent
transmissions on the same spreading factors, increased with
the inevitable densification of device deployment, will lead to
collisions and degradation in performance. The problem is
further amplified due to the shortage in radio resources, with
multiple operators utilizing the same unlicensed frequency bands.
In this paper, we investigate different inter-operator cooperation
schemes and devise multiple algorithms for spreading factor
assignment in a multi-operator LoRaWAN deployment scenario.
We start by proposing a proportional fair optimal formulation for
the assignment with the objective of maximizing the logarithmic
sum of the normalized throughput per spreading factor. Under
the assumption of partial operator cooperation, we propose
a gradient ascent based iterative algorithm for solving the
spreading factor assignment problem, and a game theory based
approach, wherein each network operator seeks to maximize
its own normalized throughput. Finally, and with cooperation
between different operators bound to be limited, we use recurrent
neural networks to enable the prediction of the success rate per
spreading factor. This prediction allows the different operators to
assign spreading factors with minimum cooperation. We simulate
our proposals and compare them to the legacy LoRaWAN
approach as well as others in the state-of-the-art, highlighting
the gains they produce in terms of total normalized throughput
and packet delivery ratios.

Index Terms—LoRa, LoRaWAN, Recurrent Neural Networks,
LSTM, Optimization

I. INTRODUCTION

With over 30 billion currently connected Internet of Things
(IoT) devices, and over 75 billion ones expected in the market
by 2025 [1], it is essential that IoT networks move past their
legacy configurations in order to support this increasing de-
mand within their limited bandwidth. Developed by Semtech,
Long-Range (LoRa) is a physical layer technology that uses
chirp spread spectrum (CSS) techniques to spread a narrow-
band signal over a certain channel bandwidth. This increases
the distance the signal could travel while reducing the power
costs, enabling thus the connectivity of thousands of devices
with battery lifespans in the years.

Among the solutions for the MAC layer is LoRaWAN [2],
an upper layer protocol developed by the LoRa Alliance. Lo-
RaWAN uses Aloha [3] for channel access. Devices transmit
on a randomly chosen channel without any coordination. They

use a spread-spectrum modulation technique derived from CSS
technology. The spreading code applied to the original data
signal is called the spreading factor (SF). LoRa supports a
total of six spreading factors (SF7 to SF12). Only packets
transmitted at the same time, on the same SF, and on the same
channel, will collide. Despite their soaring popularity, LoRa
and LoRaWAN still face multiple challenges pertaining to duty
cycle limitations, inter-network interferences, and scalability
issues.

First, LoRaWAN transmissions are restricted to a 1% duty
cycle. This is to ensure fair access within the industrial, sci-
entific, and medical (ISM) bands. Such a restriction limits the
available radio resources, especially on the downlink, making
traditional scheduling approaches, which require heavy signal-
ing on the downlink, infeasible. As such, it was necessary to
have SF assignment algorithms that require as little signaling
as possible.

Second, the ISM band could be heavily utilized. Different
operators and different technologies could easily be co-located
with a certain LoRa network. This means that inter-network
interferences are to be expected as LoORaWAN networks must
be able to coexist. In current LoRaWAN deployments, the
duty cycle limitation, intended to provide fair resource sharing
between different networks in the ISM bands, is the only
aspect connecting different co-located networks.

Thirdly, LoRaWAN suffers from a scalability problem. A
LoRa network is supposed to be able to handle hundreds
to thousands of devices within a large area. Nonetheless, as
LoRaWAN uses random access techniques, such as Aloha, an
increase in the number of devices would lead to an expo-
nential increase in the number of collisions. Devices further
away from the gateways would suffer the most, a significant
inconvenience as LoRa is supposed to provide access at the
longest ranges.

Legacy LoRaWAN supports an adaptive data rate (ADR)
scheme where each node increases its SF in order to reach
a gateway. Thus in its default state, each device would be
transmitting using the SF which gives it the highest data
rate while maintaining connectivity. We aim to go past the
legacy approach as we propose multiple algorithms for SF
assignment in multi-operator LoORaWAN deployments. While
centrally allocating SFs on all devices is desirable and optimal,
it would require all the different operators to relay the entirety
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of their network information to a central entity i.e., complete
cooperation. This is not feasible or expected in practical imple-
mentations. In this paper, we examine three other levels of op-
erator cooperation. The first assumes the complete lack of such
cooperation, wherein each network uses legacy LoRaWAN
approaches and ADR for SF selection. The second, partial
cooperation, leverages secure aggregation to have operators
safely share bulked updates. And the third, which we label as
minimal cooperation, only requires established turns between
the different operators seeking to optimally assign SFs to their
devices. In our work, we propose SF assignment algorithms to
tackle all the aforementioned challenges and others resulting
from co-located network operators using the same ISM band.

We start by proposing an optimal formulation for SF as-
signment in LoRaWAN deployments with multiple network
operators present. We propose a gradient ascent based iterative
algorithm to solve this problem with partial cooperation among
the different operators. Using the same level of cooperation,
we put forward a game theory based approach, wherein every
network seeks to maximize its own normalized throughput.
Finally, under the pretense of minimal cooperation between
operators, we propose a learning based approach capable of
solving the SF assignment problem for all the co-located
operators relying only on established turns. We simulate our
proposals under different scenarios studying the impact of
the number of devices, packet generation rate, deployment
area size, and the number of gateways on the performance.
We compare our algorithms to the legacy ADR LoRaWAN
approach as well as to algorithms from state-of-the-art, high-
lighting thus the advantages of our proposals.

The rest of this paper is structured as follows: section II
has the related works from the state-of-the-art. In section III,
we introduce our system model. We discuss our optimal
formulation for SF assignment in section IV and our iterative
gradient ascent approach to solving it among different network
operators in section V. We propose a game theoretic based
algorithm for SF assignment, present the player utilities, and
discuss attaining the Nash equilibrium in section VI. In sec-
tion VII, we introduce recurrent neural networks and long short
term memory networks and discuss how we can model the
success rate as a time series to be predicted. We then introduce
our learning-based proposal for SF assignment in LoRaWAN.
Simulations and results are presented in section VIII. Finally,
the paper is concluded with section IX.

II. RELATED WORKS AND CONTRIBUTIONS

We aim to highlight the different proposals in the state-
of-the-art seeking to provide solutions for SF assignment in
LoRaWAN.

A plethora of articles in the state-of-the-art discussed the
potentials as well as challenges facing LoRa networks. In [4],
the authors study the scalability of legacy LoRaWAN using
an ns3 simulation environment. They state that downstream
traffic has a negative impact on the packet delivery ratio and
that gateway densification can improve performance. They
conclude that duty cycle limitations will always limit the

scalability of LoRaWAN. In [5], the authors verify that while
ADR SF selection reduces device energy consumption, it
remains detrimental to the scalability of LoRaWAN. In [6],
the authors propose a monitoring system for LoRa architecture
by using a smart gateway. They then study the performance of
LoRa under different scenarios. The authors in [7] study the
impact of ISM band interferences on LoRa bit error rate per-
formance. They show that there exists a signal-to-interference
ratio threshold beyond which the impact of narrow-band
interference becomes negligible.

More specifically in the context of our work, many in the
state-of-the-art propose SF assignment algorithms which go
beyond the legacy LoRaWAN approach. In [8], the authors
propose what they described as a “smart spreading factor
assignment” algorithm for LoRaWAN. They use support vec-
tor machines and decision tree classifier machine learning
to optimize the SF assignment. They show via simulations
that their proposal improves the packet delivery ratio for
LoRaWAN.

The authors in [9] propose an interference-aware SF assign-
ment algorithm. They take multiple factors into consideration
including gateway sensitivity, interfering SFs, and the interfer-
ing energy in order to assign SFs in a manner that reduces the
significance of the interference. They produce an assignment
that decreases the time-on-air for every device. They show that
their algorithm improves the packet delivery ratio with respect
to legacy distance-based LoRaWAN SF selection.

With a traffic oriented approach in mind, the authors in [10]
propose an SF assignment algorithm based on equalizing the
traffic load on the SF channels. They also propose another
algorithm which uses K-means to relieve critical regions which
suffer from a significant number of collisions. The authors
claim that their proposals, which have incremental complexity
with respect to the state-of-the-art, open the door for enhancing
the scalability of LoRaWAN in heterogeneous IoT scenarios.

With the aim of improving the probability of data delivery
in LoRaWAN, the authors in [11] and [12] highlight the
shortcomings of legacy SF assignment techniques and propose
algorithms to address them. While the authors in the former
claim that they can improve the scalability of LoRaWAN
with a small increase in the end devices’ power consumption,
the authors in the latter illustrate that they can improve data
delivery in dense LoRaWAN deployments.

In [13], the authors present an extension to the classic
ADR strategy which they called ExpLoRa-SF. This approach
seeks to equally distribute the SFs among the devices in the
network subject to the radio conditions (and subsequently
SNR) constraints experienced by the devices. They show
that their proposal outperforms the legacy approaches to SF
selection.

In [14], the authors propose a lightweight scheduling al-
gorithm for SF selection and transmit power assignment. In
their proposal, RS-LoRa, devices choose their own spreading
factors based on probabilities assigned depending on the rate
produced due to using each of the available SFs. They show
via simulations that in a single cell scenario with 1000 nodes,
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their proposal can reduce the packet error ratio of the legacy
LoRaWAN approach by about 20%.

Finally, recurrent neural networks [15], game theory for
channel access [16], and the dynamics of Nash equilibri-
ums [17], have been studied in the state-of-the-art before.
Nonetheless, to the best of our knowledge, we are the first
to use these approaches for spreading factor assignment in
LoRaWAN.

In our work, we consider multiple co-located network
operators unlike the vast majority of the state-of-the-art which
works on single operators [8], [9], [11], [12], [14]. This allows
us to study scenarios where the competing networks are not
cooperative rendering many of the proposals in the state-of-
the-art moot. We additionally enlist recurrent neural networks
to help predict the success rate at the network gateways,
enabling thus a distributed SF assignment process.

We summarize our contributions as follows:

(a) We propose an optimal problem for proportional fair
SF assignment in a multi-operator scenario. Using this
formulation, we propose multiple algorithms for SF as-
signment under different scenarios of inter-operator co-
operation. We simulate our algorithms and compare them
to the legacy LoRaWAN SF selection approach as well
as to others in the state-of-the-art.

(b) Because of the existence of multiple operators, centrally
solving such a problem is unfeasible. As such we pro-
pose a gradient ascent algorithm, wherein the different
networks would solve the problem iteratively with partial
inter-network cooperation maintained via secure aggrega-
tion.

(c) We propose a second algorithm for SF assignment based
on game theory. The different operators would greedily
seek to maximize their own normalized throughput. We
show that the game converges to an efficient Nash equi-
librium.

(d) We consider a realistic scenario wherein different opera-
tors are unlikely to cooperate. We enlist recurrent neural
networks, specifically long short term memory networks,
to help predict the success rate per spreading factor and
enable the different networks to choose the device SFs
while retroactively accounting for the different network
SF selections.

III. SYSTEM MODEL AND SPECIFICATIONS

We consider multiple LoORaWAN deployments belonging
to different operators. Each network i € A has N' nodes
and r* gateways. The gateways for the different operators are
coincident i.e., they are present at the same location sites. The
devices are scattered across a square shaped area as shown
in Fig. 1, with every color marking a device belonging to a
different operator.

All nodes generate packets with a rate A (considered the
same for all devices presently). Transmit attempts are done
according to a Poisson process with the packet size [ being
constant. Let T; be the time needed to transmit a packet using
spreading factor s. T is dependent on the packet size. LoRa

supports SFs ranging from 7 to 12. The latter represent a trade-
off between coverage and data rate. For instance, SF7 produces
the highest data rate, but covers the shortest distance. The
SFs are orthogonal, this means that packets transmitted during
the same time frame with different SFs will be successfully
received. LoRa utilizes forward error correction to detect and
correct transmission errors with the coding rate set to 4/(C'+4)
where C' € {1,2,3,4}. Table I shows the variation of data rate,
sensitivity and SNR thresholds as a function of the SFs utilized
in the 868 MHz band (C=1).

A
A\ 4

Area Side Length A [km]
Fig. 1. A 4 gateway multi-operator LoORaWAN deployment
TABLE I

LORA RATES, RECEIVER SENSITIVITY, AND SNR THRESHOLDS AS A
FUNCTION OF THE SFs

SF  Data Rate [kbps]  Sensitivity [dBm] SNR [dB]
7 5.458 -123 [-7.5,00[
8 3.125 -126 [-10,-7.5[
9 1.757 -129 [-12.5,-10[
10 0.976 -132 [-15,-12.5[
11 0.537 -134.5 [-17.5,-15]
12 0.293 -137 [-20,-17.5[
¢ 0 Not covered <-20

The upper layer protocol LoRaWAN uses a star topology.
Each network connects to its own network server with one hop
communications, where all the gateways forward the packets
to the server. A typical architecture of such a network can be
seen in Fig. 2.

As LoRaWAN uses pure Aloha as a channel access scheme,
the duty cycle in the LoRa band is limited to d=1%. As such,
the packet generation rate must verify A7Ts<d. LoRaWAN
supports multiple frequency bands within the unlicensed bands
of 433, 868, and 915 MHz. In Europe, the 868 MHz band is
used with the 125, 250, and 500 kHz bandwidth channels.
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Fig. 2. LoRaWAN architecture

Fig. 3 shows a typical network stack of a LoRa node. Based
on the application, LoRa devices can be divided into three
classes:

o Class A: The device wakes up to send a certain packet.
After sending the packet, the device listens for a short
period of time. This class of LoRa devices consumes the
least amount of energy.

e Class B: The device has regularly scheduled listening
periods.

e Class C: Under this configuration, a device is always
listening. This leads to maximum energy consumption.

Applications
LoRaWAN (MAC)

Class A Class C

LoRa Technology (PHY)

ISM Band

Fig. 3. LoRa node network stack

An additional advantage for our proposals in this paper is that,
contrary to many in the state-of-the-art, they do not require
additional synchronization with respect to current LoRaWAN
specifications for class A. The network server can notify
the nodes about the SF assignments within their receiving
windows. Finally, Table II has a summary of the notations
concerning our system model.

IV. OPTIMAL PROBLEM FOR SF SELECTION

The total normalized channel traffic load per spreading
factor s can be written as:

N
Z (A py - NOT, 1)

Where N! is the number of covered nodes belonging to
operator ¢. The normalized Aloha throughput on each SF s

TABLE II
NOTATION SUMMARY

Notation  Definition

A Packet generation rate

Ts Time to transmit a packet on SF s

l Packet length in bytes

d Duty cycle

N¢ Total number of covered nodes

Ny Total number of nodes that can use SF s and higher
NZ Number of covered nodes for operator %

N? Number of nodes that can use SF s and higher for operator ¢
Ps Ratio of devices using SF s

pl Ratio of devices using SF s and belonging to operator @
G Total normalized traffic load on SF s

N Set of operators

T Total normalized throughput

can be expressed as Ggexp(—2G;), and as such the total
normalized throughput in the network becomes:

S
T =) Giexp(—2G,) 2)

s=1
The problem of finding the optimal SF assignment ratios p;
can be formulated as follows:

S
Max1mlzeZIOg (Gsexp(—2Gy)) (3a)
Ps
s=1
Subject to
s
> pa<1, (3b)
s=1
s s Nk
Zpk SZWC’ Vs=1,...,5. (3c)
k=1 k=1

The logarithmic function in the objective in (3a) enforces
proportional fairness in the throughput among the different
spreading factors. The constraint in (3b) ensures that the sum
of spreading factor percentages does not exceed one, while
the constraints in (3c) indicate that the percentage of devices
utilizing a certain SF s does not exceed the number of devices
capable of using s and higher. Note that s = 1 represent SF7
and so on.

This problem in its current state can only be solved at
a centralized server which has all the information on all
the devices. This would be possible in the presence of one
operator. However, with devices and gateways belonging to
different operators, it is unrealistic to expect operators to share
their data in this manner.

V. SF SELECTION WITH AN ITERATIVE GRADIENT
ASCENT ALGORITHM

In our first proposal, we use a gradient ascent [18] based
approach to solve our SF assignment problem iteratively for
the different networks. We propose the usage of the federated
technology of secure aggregation [19] to have the networks
transmit to each other what we label as A\¢, the traffic generated
by other co-located operators. The different networks agree
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on masks, that sum to zero, which they add to their updates.
The individual updates appear to be randomized but their sum
results in meaningful data. This ensues that even the aggregator
does not have access to individual updates. In succession,
each network ¢ will seek to maximize its own utility until
convergence. This process is illustrated in Algorithm 1.

Algorithm 1 Iterative SF Selection Algorithm
1: Requires: Set of networks A and device arrival rate A
2: Input: Maximum tolerance € < 107
3: Initialize: t = 0

4: Do

5: t < t+1

6: For i=1,... .\

7: Calculate p'(t) by solving the problem in (3a) as
8: shown in Algorithm 2

9: Update A% = \-p’ - N! and send it for aggregation
10: Compute & = [|p;(t) — pi(t — 1)]|

11: End For

12: While 3 i € A such that §* > ¢

In order to solve the problem in (3a), we use gradient ascent.
We calculate the gradient for (3a) and network ¢ as:

; Ty M- N:

Vi) = S
I = XN e T
where the external traffic per spreading factor \¢ represents the

traffic from the other co-located networks and can be expressed
as:

—2-A-N. 4

A= "A-pl-NJ. (5)
J#i
Successively, and for each iteration ¢, the value of the gradient
is multiplied by a learning rate 5 and added to the previous
value of p%. The result is projected onto a feasible solution.

TS_)\'NC _2.A-NF)
TGANCZPZS‘F)\(;TS

(6)
This is done until the value of p’ no longer changes within
a certain margin of error. This process is illustrated in Algo-

rithm 2.

Palty +1) = palty) + B(

Algorithm 2 Optimization Using Gradient Ascent
1: Requires: Learning rate § small enough
2: Input: Maximum tolerance € « 1073
3: Initialize: t, = 0
4: Do
5 tg — tg+l _
. . T, AN .
6 pi(ty+1) < pity) + Blexmrpanes —2- A Neo)
; LPs A
8
9

Project p’ onto the problem constraints as shown in (7)
Compute 6 = ||pi(ty) — pi(ty — 1)||
: While § > ¢

As the gradient ascent is usually used for unconstrained
problems, it is important to project the result of each iteration
onto the feasible subset. We do so following [20] where the

projection of an n-dimensional point pi® onto a simplex can
be described as the solution of the following problem:

Minimize  |[p. — p™||? (72)
Py
Subject to
pi >0,Vse S (70)
S .
>opsl, o
s=1
s ) S Nz
ZPQSZF@’ Vs=1,..,5. (7d)
k=1 k=1""¢

Finally, the iterative SF algorithm is guaranteed to converge
with an average of 3 to 4 iterations.

VI. MULTI-OPERATOR GAME FOR SF ASSIGNMENT

Under the same level of operator cooperation, we aim to
use non-cooperative game theory to propose an algorithm
for SF assignment. Each network seeks to select the set
of spreading factors which maximizes its own normalized
throughput. Nonetheless, if all networks do so greedily and
independently, they would entirely default to the lowest SF
selections the radio conditions allow, increasing thus the risk
of collisions. The different operators, ¢.e., the players of our
game proposal, are competing for contradicting objectives.
This makes game theory well adapted to SF assignment in
multi-operator LoORaWAN deployments.

A. Game Formulation

As such, we define a multi-player game G between the
different operators present. The formulation of this game
G = WN,S =TI, Si,U;) can be described as follows:

« A finite set of players i € N, the set of operators.

o The action of a given player is the percentage of devices
allocated any spreading factor s, the strategy chosen by
an operator i is then p* = (pi, ..., p}), the percentage of
its devices on each spreading factor, where for example,
p} is the percentage of devices using SF7.

« For each player ¢, the space of pure strategies is .S; given
by what follows: S; =

{p* €10,1)°| hs(p") > 0 and ¢(p*) > 0,¥s =1,..., S}

(®)
where
hi(p) =1-Y p ©)
s=1
o ° . N¢ S
() =Y F =D n (10)
k=1~ ¢ k=1

S = 51 X ... x S|z is the set of all strategies.
o A set of utility functions (U;epr) that quantify players’
profit for a given strategy profile.
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B. Player Utilities

Each player, i.e., network operator, will seek to greedily
maximize the logarithmic sum of its own normalized through-
put. The utility per network operator can be expressed as:

s
U, = Zlog(Gi exp(—2Gy)),

s=1

(1)

where exp(—2Gy) represents the success ratio per spreading
factor in the entire system (and coincides with the success
ratio of any network ¢), and G, represents the traffic load of
network 7.

G =(A-pg- NJTs. (12)
As such, each player will seek to maximize its own delivered

traffic, regardless of the others.

C. Existence of Nash Equilibrium

In game theory, a rational solution is one where all compet-
ing players adhere to a Nash equilibrium (NE) [21]. An NE is
a profile of strategies in which no player will take advantage
of the others by deviating its strategy unilaterally. In our game
G, for every network i, the strategy space .S; is a compact and
convex set as the functions h;(p’) and ¢i(p*),Vs = 1,...,9
are concave in p’ (linear in p*). Furthermore, U; is concave
and continuously differentiable in p’ and continuous in p~*
(the strategy of all other players). Hence, pure NE exist as
proven by Rosen [22]. Given these strategy sets, p* € S is a
pure strategy Nash equilibrium if and only if Vi € N/, p™* is
an optimal solution of the following problem:

Maximize U;(p',p~") (13a)
i

Subject to

hi(p') >0 (13b)

gi(p') >0, Vs=1,..,5. (13¢)

The optimum p** must satisfy the Karush-Kuhn-Tucker (KKT)
conditions. The latter are sufficient because we are in the pres-
ence of convex optimization. There exists a unique Lagrange
multiplier a such that:

; 1
= 14
Ps = ¥ aNT, 19
a-hi(p™) = 0. (15)
This produces two cases:
o if =0, given that 37| pi* < 1, then pi* = sybor.

o if & # 0, and given that E

1ps < 1, then
S5 vl
s=1 a+2ANIT, "

D. Uniqueness of Nash Equilibrium

The uniqueness of the Nash Equilibrium is obtained if the
utility functions U;,Vi € A are diagonally strictly concave
(DSC). We denote by Vu(p) = [V,U;(p)] € RS where
ViUi(p) = [&,s = 1,...,5] and by JU(p) the Jacobian

apt

of Vu(p). Hence, the (i, )" element of JU(p) is given by
what follows:

Jju(i, j) = S]=0 (16a)

[ (pi

A sufficient condition for the DSC property (theorem 6 in
[22]) is that the matrix (JU (p)+JUT (p)) is negative definite
Vp € S. The latter is verified as the matrix (JU (p)+JUT (p))
is diagonal with elements strictly negative owing to (16).

ju(i,i) = (16b)

E. Reaching Nash Equilibrium

The primary challenge in game theory is to propose al-
gorithms capable of reaching an NE. The simplest of these
algorithms are the repeated best response dynamics. Following
these dynamics, each player selects the best, and locally opti-
mal, response to other players’ strategies, until the algorithm
converges. To benefit from such a property, we show that our
game G is an exact potential game with the potential function
V(p) given by:

s

S
> log(GL) —2) G,

s=1 s=1

_P“ﬂz

Il
-

a7)
According to [23], the game G is a continuous exact potential
game as we have what follows:

oU; oV (p)
opl — Opl

Exact potential games have a distinct computational advan-
tage in that reaching the pure NE is done by implementing
greedy best response dynamics, obviating the need for com-
putational fixed point theory. Therefore, the computation of
an equilibrium is reduced to solving the optimization problem
in (13) at each iteration ¢; of the Best Response dynamics,
where each network ¢ seeks, in turn, to find its optimal SF
distribution as a response to p~*(t, — 1).

The best response algorithm we implemented is sketched
in Algorithm 3. In order for the best response algorithm to
progress, each operator needs to assess the impact of all the
other co-located networks. It does not however need access to
individual network information. As such, we proposed using
secure aggregation, wherein all the networks would send the
value of A\ = \ - p’ - N! for aggregation after locally solving
the SF assignment problem. This allows for a non-invasive
level of cooperation between the different operators.

,Vie N,Vse S,

S

VII. LEARNING BASED ALGORITHM FOR SF ASSIGNMENT

In our two previous approaches, we considered that some
level of cooperation, guaranteed via secure aggregation, re-
mains between the different network operators. In the fol-
lowing learning-based approach, we assume that no such
cooperation is necessary. In order to optimize the spreading
factor assignment for LoORaWAN, each network operator must
then be able to estimate the total packet delivery ratio (success
rate). If a network operator has the success rate per spreading
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Algorithm 3 Game Theory Based Algorithm for SF Selection

1: Requires: Maximum tolerance ¢ + 107
2: Input: Initial SF assignment limits
3: Initialize: ¢, = 0

4: Do

5: ty<tp+l

6: For i=1,... .\

7: Solve the problem in (13) for ¢

8: Update p’,

9: Update A\i = \-p’ - N! and send it for aggregation
o Compute 8" = [lph(ts) — pi(ts — 1)

11: End For
12: While 3 i such that §* > ¢

factor (exp(—2Gy)), and given that it knows its own traffic,
it can calculate the impact of the other networks AS. We use
recurrent neural networks (RNN), specifically long short term
memory (LSTM) networks to predict the success rate per SF
in the network. In our work, we treat the latter as a time series
to be predicted.

A. Recurrent neural networks for time series prediction

Recurrent Neural Networks have been adopted in a wide
range of machine learning tasks, particularly, when they re-
quire handling time-related data in either input or output, such
as image captioning, music generation, speech recognition,
handwriting recognition, machine translation and times-series
prediction. RNNs are suitable for capturing the relationship
between sequential data points owing to their recurrent struc-
tures. In detail, recurrent hidden states depend on both the
current input and the network states at the previous time steps,
instead of only the current input as in a conventional feed-
forward neural network.

Nonetheless, RNNs suffer from many problems which pro-
hibit them, in their traditional form, from effectively dealing
with time series, among which are the vanishing and exploding
gradient issues. As such, alternative units have been proposed
such as LSTMs. LSTMs [24] introduce multiple gates to deal
with memory problems such as the vanishing gradient. An
LSTM unit is illustrated in Fig. 4.

Let c;_1 be the previous cell state and c; the new cell state.
Denote by f; the output of the forget state and i; the output
of the input gate. ¢; is called the candidate and h; is the
hidden state. Finally, bf, b., b;, and b, are the bias parameters
associated with aforementioned outputs.

The unit works as follows:

1) First, the previous hidden state h;_1 and the current input
x; get concatenated. This is called the combine.

2) This combine is fed into the forget layer which removes
non-relevant data. The output after the first Sigmoid
function is expressed as:

ft ZO'(J)thCf—th_lth—l-bf). (18)

= X H— >
1 ¢
. X| . [ tanh |
L l’,[,- b (.

[ N\ Ve N\ Ve N

(o) [ o) (tamh) ([ o ;—)

AR N4 Oy

I I I | >

hiy hy

Xt

Fig. 4. An LSTM unit

3) Using the combine, a candidate layer is created. The
candidate ¢; holds values to possibly add to the cell state.

/C\t = tanh (l’thC + ht,1th + bc) . (19)

4) The combine is additionally fed into the input layer which
decides what data from the candidate should be added to
the new cell state. The result after the second Sigmoid

function ¢; is expressed as:
it = 0 (2eWai + he—1Whi + bi) . (20

5) After computing the forget layer, candidate layer, and the
input layer, the cell state ¢; is calculated as:

ct = frx Ci_1 + 1t * Cp. (21)
6) Finally, the output o; is computed:
0y =0 (xtho + he—1 Wh + bo) . (22)

7) The multiplication of the output and the new cell state
yields the new hidden state hy:

h’t = Ot * tanh (Ct) . (23)

B. Predicting the Success Rate

We aim to predict the success rate for packet arrivals i.e.,
the percentage of packets which were correctly received at the
gateways. Using packet frame numbering we assume that the
network can record the success ratio for a certain number of
time frames. We train an LSTM network to predict the success
rate for successive time frames. The neural network parameters
are shown in Table III.

TABLE III
LSTM PARAMETERS FOR SUCCESS RATE PREDICTION

Parameter Value
Number of hidden units 140
Percentage of training data 90%
Gradient threshold 1
Maximum number of training epochs 1000
Initial learning rate 0.015

Learning rate drop period (in epochs) 160
Learning rate drop factor 0.25

We track the learning progress for the LSTM network and
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plot the loss and the root mean squared error (RMSE) as a
function of the number of epochs. The results can be seen
in Fig. 6. We further use the trained model to predict the
next 500 time frames and measure the difference between the
simulated values and the predicted ones. The results can be
seen in the box plot of Fig. 5. The median error in prediction
sits at about 1.5% with the error being less than 3% more than
75% of the time. Such small errors might not always have an
impact on the performance of the algorithm, with respect to
the gradient ascent proposal, but resulting discrepancies can
be seen in the difference in the total normalized throughput in
the simulations.
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Fig. 5. Error in success rate prediction

C. Algorithm for SF Assignment

Using LSTMs we propose an algorithm to assign the SFs in
the different networks following the optimal problem in (3).
This keeps cooperation between the different network oper-
ators to a minimum. All what needs to exist is established
turns between the different network operators. While this is
not necessary for the algorithm to converge, it does insure
that a few number of iterations (< 5) would be sufficient for
convergence.

VIII. SIMULATIONS AND RESULTS

We seek via simulations to compare our proposals and test
their effectiveness in different scenarios. Unless changed by
the simulated scenario, the simulation parameters are as stated
in Table IV.

A. Impact of Packet Size

We first aim to study the impact ot the LoRa packet size on
the performance of our algorithms. To this end, we simulate
our three proposals alongside the legacy LoRaWAN ADR SF
assignment algorithm for the packet lengths [ of: 10, 20, 30,
40, and 50 bytes. Figure 7 has a plot showing the resulting
total normalized network throughput as a function of the latter.

For all the different packet lengths, our algorithms vastly

Algorithm 4 Learning Based Algorithm for SF Selection

1: Requires: Maximum tolerance € + 1073

2: Input: Initial SF assignment limits

3: Initialize: ¢{; =0

4: Do

5: For i=1,... .\

6: Solve the problem in (3) for ¢

7: Estimate own success rate

8: Send values to the LSTM for training
9: End For

10: While LSTM did not converge

11: Do

12: ti<t+1

13: For i=1,....\

14: Predict the success rate using the LSTM
15: Calculate A\¢ for network i

16: Solve the problem in (3) for ¢

7 Compute &' = [[pi (1) — pi(t; — 1)]|

18: End For
19: While 3 i such that §* >

TABLE IV
SIMULATION PARAMETERS

Parameter Value

Number of different network operators 4

Number of devices 750 per network (3000 total)
Number of gateways per network 4

Deployment layout Square with side S' = 8 km
Path loss model Okumura-Hata Model

Spreading factors 7-12

Tx power 14 dBm
Carrier frequency 868 MHz
Gateway/Device height 30/1.5 m
Packet generation rate A 5 packets/hour
Packet length 50 Bytes

outperform the legacy LoRaWAN SF selection. For a packet
length of 10 bytes, our proposals achieve a total normalized
throughput of about 0.65, compared to 0.2 for the legacy
LoRaWAN approach. This gap increases as the packet length
increases. At [=50 bytes, the gradient ascent algorithm pro-
duces a total normalized throughput close to 0.95, compared
to 0.33 for the legacy algorithm. Finally, our learning proposal
achieves near identical results to the gradient ascent algorithm,
and they both slightly outperform the game theoretic approach
for larger packet lengths. We further compare between the
different algorithms in terms of the total packet delivery
(success) ratio. Figure 8 has a plot with the results.

Similar to before, our algorithms outperform the legacy
LoRaWAN approach, with the exception of the game theory
proposal in the case of small packet length. As the packet
length increases, the total packet delivery ratio degrades for
all algorithms as the performance gap between our proposals
and legacy LoRaWAN approach increases. At [=50 bytes, the
packet delivery ratio for the gradient ascent algorithm is about
0.61 compared to 0.44 for the legacy LoRaWAN algorithm.
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Fig. 7. Impact of packet length on the total normalized throughput

Finally, the errors resulting from the learning process are more
visible here, with the gap between the learning algorithm and
the gradient ascent algorithm widening.

B. Individual Network Normalized Throughput

As noted in the previous section, the gradient ascent al-
gorithm outperforms the game theoretic approach in terms
of the total normalized throughput (3¢ G5 exp(—2Gy)). In
this section we look at the results in terms of the individual
network normalized throughput values (Y ¢ G% exp(—2G)).
Figure 9 has a bar graph with the results.

Packet Length in Bytes

Fig. 8. Impact of packet length on the total packet delivery ratio

While the logarithmic function in the objective of the
gradient ascent algorithm forces fairness among the different
SFs, this does not mean the normalized throughput per network
would be the same. While it does come at the cost of the
total normalized throughput, the greediness of each network
operator in the game theoretic approach ensures that they all
end up with the same normalized throughput values when the
algorithm converges. Figure 9 shows that for the game theory
based algorithm, each of the networks achieves a normalized
throughput value close to 0.22. This is much more lucrative
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Fig. 9. Performance in terms of individual network normalized throughput

than what the legacy algorithm provides and much more
balanced than what the gradient ascent algorithm produces.

C. Impact of Variation in the Packet Generation Rate

In this section, we study the impact of varying the LoRa
devices’ packet generation rate on the performance of our
algorithms. To this end, we vary the generation rate between
1 and 5 packets per hour and plot the effect this has on the
total normalized throughput in Fig. 10
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Fig. 10. Impact of packet generation rate on total normalized throughput

Similar to before all our proposals outperform the legacy
approach. The latter produces a normalized throughput of
about 0.12 at a packet generation rate of 1 packet/hour, which
increases to 0.34 at a packet generation rate of 5 packets/hour.
In comparison, our gradient ascent and learning algorithms
produce normalized throughput values between 0.42 and 0.96
for the same generation rates. Again, the game theoretic ap-
proach lags our other proposals when it comes to a congested
network. This is the cost of added fairness.

Inversely, the total packet delivery ratio degrades as the
packet generation rate increases. This is because the possibility
of collisions increases as the devices transmit more. The results
are plotted in Fig. 11.
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Fig. 11. Impact of packet generation rate on total packet delivery ratio

We notice that for a small packet generation rate, the
legacy LoRaWAN algorithm performs well in terms of packet
delivery ratio. This significantly changes as the generation
rate increases. For A = 5 packets/hour, the gradient ascent
algorithm has a delivery ratio of about 0.6, compared to 0.53
for the game theoretic approach and just 0.44 for the legacy
algorithm. Furthermore, for lower packet generation rates, the
error in prediction for the learning algorithm is more visible
on its performance with the gap between it and the gradient
ascent algorithm growing.

D. Impact of the Number of Devices

We aim to assess the performance of our algorithms as a
function of the number of devices present in each network.
We vary the number of devices per network from 100 (400
total) to 1250 (5000 total). Figure 12 has the resulting total
normalized throughput for each algorithm.

As the number of devices increases, the total normalized
throughput increases as well. At 100 devices per network, our
algorithms produce a total normalized throughput value close
to 0.32 compared to 0.08 for the legacy algorithm. At 1250
devices per network, the gradient ascent approach results in a
normalized throughput close to 1.08 compared to 0.42 for the
legacy algorithm.

An inverse effect can be seen with the total packet delivery
ratio as more devices means more collisions. Figure 13 has
a plot showing the impact of the number of devices on
the total packet delivery ratio. For a small number of 100
devices per network only, all the algorithms show a similar
packet delivery ratio close to 0.9. The differences between the
algorithms widen as the number of devices increases. At 1250
devices per network i.e., 5000 total in the simulation area, the
packet delivery ratio for our gradient ascent algorithm is 0.46,
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compared to approximately 0.28 for the legacy approach.
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Fig. 13. Impact of the number of devices on the total packet delivery ratio

Finally, we study the fairness our proposal enforces between
the different SFs, and how it differs with the number of devices
present. We calculate Jain’s fairness index [25] following the
Raj-Jain equation as:

_ (S w)

zs ) = S
S - Zs:l J"g
Where x, represents the throughput per spreading factor, and
S is the total number of available spreading factors. For 2000
total devices in the networks, the ADR approach produces a
Jain index value of only 0.469, compared to 0.893 for the
game approach and 0.9312 for the gradient ascent algorithm.
In the case of 5000 total devices in the simulation, the legacy
approach produces a Jain index value of 0.735, with 0.958
for the game approach and 0.999 for the gradient ascent
algorithm. The increase in the fairness among different SFs

J (21,72, ... (24)

with the increase in the number of devices might seem counter-
intuitive. Nonetheless, it is a direct effect of previously less
populated SFs being crowded with additional devices. Even
with the resulting increase in collisions, the throughput would
still increase as illustrated in the simulation above.

E. Effect of the Area Size

We vary the simulation area size and study the effects it
has on the performance of our algorithms. We consider seven
cases with the square area side A = 1, 2, 4, 8, 12, 16, and
20 km. The impact on the total normalized throughput can be
seen in Fig. 14

Up until A =20 km, our proposed algorithms are unaffected
by the change in the size of the area where the devices are
spread. The gradient ascent and learning algorithms produce
values near 0.95 and the game theoretic algorithm values close
to 0.86. On the other hand, the legacy LoRaWAN algorithm
suffers when the area size is small. This is because the
algorithm will have most of the devices transmitting on the
same SF of 7. The performance of the algorithm gradually
improves as A increases until it starts degrading with the rest
of the algorithms when A is greater than 16 km.
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Fig. 14. Impact of the area size on the total normalized throughput

A similar impact can be seen on the packet delivery ratio.
Figure 15 shows the packet delivery ratio for each of the
algorithms as a function of the area size. For the gradient
ascent and learning algorithms, the value stagnates at about
0.6 and for the game theory based algorithm at about 0.52
before it ticks up slightly at the end. For the legacy LoRaWAN
algorithm, a low packet delivery ratio of 0.35 is recorded
for small area sizes before it gradually increases to reach a
maximum of about 0.6 at A = 16 km. Finally, the impact of
an increase in the area size is seen primarily in the number of
covered devices N, which decreases as A increases. This is
illustrated in Table V.
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TABLE V
Nc¢ AS A FUNCTION OF S

Area Size S [km]  Total Number of Covered Devices N, %

<4 3000 100%
8 2997 99.9%
16 2806 93.5%
20 2590 86.3%

F. Impact of Traffic From a Non-Cooperative Operator

A classic LoRaWAN problem is the existence of an external
interfering source of traffic. While the multiple operators are
interfering upon each other in our scenario, they still maintain
a level of cooperation. In this simulation, we consider that an
additional external interference source from a non-cooperative
co-located network exists. The network has the same number
of devices as the others and uses ADR for SF selection. We
vary the packet generation rate per device for this external
source and plot the impact it has on the total normalized
throughput and the total packet delivery ratio.

Figure 16 has the results in terms of total normalized
throughput for the four cooperative networks. All the algo-
rithms show a degradation in terms of throughput as the
intensity of the added traffic source increases. The gradient
ascent proposal varies between 0.95 and 0.92 while the legacy
approach results varies between 0.326 and 0.313. Similar
results can be noted in terms of the total packet delivery ratio.
Figure 17 shows that the performance of all the algorithms
degrades as the intensity of the external source increases.
Nonetheless, in terms of both the packet delivery ratio and the
normalized throughput, the degradation in performance for the
operators remains minimal as our algorithms show resilience
to external interferers.

G. Energy Consumed per Delivered Byte

We aim to assess the energy expenditure per successful
delivery. For this simulation, we vary the packet generation

o
o)
T
I

—+— Legacy LoRaWAN

=1
o
Ny
[=)
=)
<]
ey
=0.7F —6— Gradient Ascent i
3 Game Theory
N
B r 4
£ 0.6
<]
z
® 05 |
°
'_

04r 4

1?"‘*\L |
03 L T -+
1 2 3 4 5

Intensity of External Source in packets/hour per Device
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normalized throughput
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rate and compare between our gradient ascent proposal and
the legacy LoRaWAN approach. Following [26], the energy
cost of data delivery can be expressed as:

a - exp(2G,)

Eodelivery ~ I
pay

; (25)

where « is the energy consumed per transmission attempt, G’
is the normalized traffic load per spreading factor and [, is
the payload size. The results are plotted in Fig. 18.

The results show that our gradient ascent proposal always
leads to a lower expenditure per delivered byte. For A = 1
packet/hour, our algorithm saves about 1% in expenditure
per byte delivered. For A = 5 packets/hour, our algorithm
consumes 30% less energy per byte delivered.
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H. Impact of the Number of Gateways and Comparison to the
State-of-the-Art

In this section, we aim to compare our proposals to the
state-of-the-art, as well as study the impact of the number
of gateways in the simulation on the performance of the
algorithms. To this end, we consider three gateway deployment
scenarios as illustrated in Fig. 19. The rest of the parameters
remain as in Table IV. In addition, we simulate two algorithms
from the state-of-the-art. The first, ExpLoRa-SF, seeks to
balance between the utilization of SFs with constraints relating
only to the radio conditions of devices. The second, RS-LoRa,
assigns probabilities for each device selecting an SF depending
on the rate capabilities on each one.

(x) (K) (x)

Fig. 19. Our different gateway scenarios

We study the impact of the number of gateways on the
coverage. Table VI shows the total number of covered devices
for each scenario.

TABLE VI
N AS A FUNCTION OF THE NUMBER OF GATEWAY S

Gateways per Network  Number of Covered Devices N, %
1 2597 86.57%
2 2902 96.7%
4 2999 99.9%

We start with evaluating the total normalized throughput.
Figure 20 shows the results for our gradient ascent algorithm
alongside the two proposals from the state-of-the-art and the
legacy LoRaWAN algorithm as well.

o
©

o
o

I L egacy LoRaWAN
I Gradient Ascent
ra-SF
-Lora

Total Normalized Throughput
o
~

o
o

1 Gateway 2 Gateways 4 Gateways

Fig. 20. Total normalized throughput as a function of the number of gateways

Our gradient ascent algorithm outperforms both proposals
in terms of throughput regardless of the number of access
points. For the gradient ascent algorithm and RS-LoRa, the
throughput increases with the number of access points. For
ExpLoRa-SF it stagnates, and for legacy LoRaWAN approach
it actually degrades.
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Fig. 21. Total packet delivery ratio as a function of the number of gateways

We additionally look at the results in terms of the total
packet delivery ratio, with the results seen in Fig. 21. In
case of one or two gateway scenarios, the legacy LoRaWAN
approach performs well in terms of packet delivery ratio, with
our proposal producing the better values in the vicinity of
0.62. In the case where four gateways are present, the RS-
LoRa algorithm slightly outperforms our proposal in terms
of the total packet delivery ratio. Nonetheless, implementing
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RS-LoRa in this multi-operator scenario requires devices with
computational power not available for all classes of LoRa
devices.

1. Comments and Analysis

In this paper, we proposed three different approaches for SF
assignment under different levels of inter-operator cooperation.

We

classified this cooperation as illustrated in Table VII and

compared it to legacy LoRaWAN SF selection process wherein
no such cooperation exists.

We
our

(a)

(b)

(©)

(d)

(e

®

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

TABLE VII
INTER-OPERATOR COOPERATION LEVELS FOR OUR PROPOSALS

Proposal Inter-Operator Cooperation Level
Gradient Ascent Partial
Game Theory Partial
Learning Algorithm Minimal/Absent

further highlight the main points that can be drawn from
different simulation scenarios:

Our gradient ascent based proposal generally produces
the best results in terms of total normalized throughput
and total packet delivery ratio as well.

Our game proposal achieves total equity between the
operators in terms of individual normalized throughput,
but at a cost in the total normalized throughput.

For less congested scenarios, resulting from small packet
sizes, low packet generation rates, or a small amount of
devices, the game theoretic proposal becomes the most
suitable.

The simulations in general show the weaknesses of the
legacy ADR approach. Whenever a majority of the de-
vices are in good radio conditions, usually a requisite for
reliable wireless communications, the algorithm would
stack the lower SFs causing more collisions.

Thus, the scalability of LoRaWAN depends on smarter
SF assignment algorithms. This however cannot be the
cause of any added signaling in the network, especially
not on the downlink as duty cycle limitations would erase
any gains as attested for in [4].

Gateway densification is necessary to improve device
coverage even in moderate area sizes. Nonetheless, this
does add to the drawbacks of the legacy LoRaWAN
SF selection algorithm with lower SFs expected to be
crowded as a result.

IX. CONCLUSION

In this paper, we proposed multiple spreading factor
assignment algorithms for LoRaWAN in the case of
multi-operator co-location. We started with introducing
an optimal formulation for spreading factor assignment
and proceeded to propose an iterative gradient ascent
algorithm which can solve the problem for different oper-
ators with a small amount of cooperation guaranteed via
secure aggregation. Under the same operator cooperation

[1]

[2]
[3]

[4]

[5]

[6]

[7

—

[8]

[9

—

[10]

assumption, we proposed a game theory based SF as-
signment algorithm, wherein the utility that each network
seeks to maximize is the logarithmic sum of its own
normalized throughput per spreading factor. Finally, we
introduced an LSTM network to enable different network
operators to predict the success rate per spreading factor.
Using the latter, we proposed a spreading factor assign-
ment algorithm for the different networks that works
without cooperation and with minimum synchronization.
We simulate our algorithms under multiple scenarios
including: different packet sizes, packet generation rates,
device numbers, area sizes, and gateways deployed. We
show that with respect to legacy LoRaWAN, our propos-
als significantly improve the total normalized throughput
as well as the total packet delivery ratio. And finally, we
show that our gradient ascent algorithm provides better
normalized throughput results with respect to proposals
in the state-of-the-art.

X. ACKNOWLEDGMENT

This research was partially supported by Labex Digi-
Cosme (project ANRI11-LABEX-0045-DIGICOSME)
operated by ANR as part of the program “Investissement
d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-02).

REFERENCES

L. Horwitzi, “The future of iot miniguide: The bur-
geoning iot market continues,” July 2019. [Online]. Avail-
able: https://www.cisco.com/c/en/us/solutions/internet-of-things/future-
of-iot.html

N. Sornin, M. Luis, T. Eirich, T. Kramp, and O. Hersent, “Lorawan
specification,” LoRa alliance, 2015.

N. Abramson, “The aloha system: another alternative for computer
communications,” in Proceedings of the November 17-19, 1970, fall
Jjoint computer conference, 1970, pp. 281-285.

F. Van den Abeele, J. Haxhibeqiri, I. Moerman, and J. Hoebeke,
“Scalability analysis of large-scale lorawan networks in ns-3,” [EEE
Internet of Things Journal, vol. 4, no. 6, pp. 2186-2198, 2017.

A. Tiurlikova, N. Stepanov, and K. Mikhaylov, “Method of assign-
ing spreading factor to improve the scalability of the lorawan wide
area network,” in 2018 10th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT),
2018, pp. 1-4.

D. Eridani, E. D. Widianto, R. D. O. Augustinus, and A. A. Faizal,
“Monitoring system in lora network architecture using smart gateway
in simple lora protocol,” in 2019 International Seminar on Research
of Information Technology and Intelligent Systems (ISRITI), 2019, pp.
200-204.

T. Elshabrawy and J. Robert, “The impact of ism interference on lora ber
performance,” in 2018 IEEE Global Conference on Internet of Things
(GClIoT), 2018, pp. 1-5.

T. Yatagan and S. Oktug, “Smart spreading factor assignment for
lorawans,” in 2019 IEEE Symposium on Computers and Communications
(ISCC), 2019, pp. 1-7.

A. Farhad, D. Kim, P. Sthapit, and J. Pyun, “Interference-aware spread-
ing factor assignment scheme for the massive lorawan network,” in 2079
International Conference on Electronics, Information, and Communica-
tion (ICEIC), 2019, pp. 1-2.

F. Cuomo, J. C. C. Gdmez, A. Maurizio, L. Scipione, M. Campo,
A. Caponi, G. Bianchi, G. Rossini, and P. Pisani, “Towards traffic-
oriented spreading factor allocations in lorawan systems,” in 2018 17th
Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net),
2018, pp. 1-8.

Authorized licensed use limited to: INRIA. Downloaded on November 13,2020 at 21:48:09 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.3031681, IEEE Internet of

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Things Journal

A. Tiurlikova, N. Stepanov, and K. Mikhaylov, “Method of assign-
ing spreading factor to improve the scalability of the lorawan wide
area network,” in 2018 10th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT),
2018, pp. 1-4.

O. Gusev, A. Turlikov, S. Kuzmichev, and N. Stepanov, “Data delivery
efficient spreading factor allocation in dense lorawan deployments,”
in 2019 XVI International Symposium “Problems of Redundancy in
Information and Control Systems” (REDUNDANCY), 2019, pp. 199-
204.

F. Cuomo, M. Campo, A. Caponi, G. Bianchi, G. Rossini, and P. Pisani,
“Explora: Extending the performance of lora by suitable spreading factor
allocations,” in 2017 IEEE 13th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob).
IEEE, 2017, pp. 1-8.

B. Reynders, Q. Wang, P. Tuset-Peiro, X. Vilajosana, and S. Pollin,
“Improving reliability and scalability of lorawans through lightweight
scheduling,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1830-
1842, 2018.

J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neural net-
works and robust time series prediction,” IEEE transactions on neural
networks, vol. 5, no. 2, pp. 240-254, 1994.

F. Zhang, M. Zhou, L. Qi, Y. Du, and H. Sun, “A game theoretic
approach for distributed and coordinated channel access control in
cooperative vehicle safety systems,” IEEE Transactions on Intelligent
Transportation Systems, 2019.

D. Cheng, T. Xu, F. He, and H. Qi, “On dynamics and nash equilibriums
of networked games,” IEEE/CAA Journal of Automatica Sinica, vol. 1,
no. 1, pp. 10-18, 2014.

M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proceedings of the 20th international conference
on machine learning (icml-03), 2003, pp. 928-936.

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMa-
han, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure
aggregation for federated learning on user-held data,” arXiv preprint
arXiv:1611.04482, 2016.

D. P. Palomar, “Convex primal decomposition for multicarrier linear
mimo transceivers,” IEEE Transactions on Signal Processing, vol. 53,
no. 12, pp. 4661-4674, 2005.

S. Lahoud, K. Khawam, S. Martin, G. Feng, Z. Liang, and J. Nasred-
dine, “Energy-efficient joint scheduling and power control in multi-cell
wireless networks,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 12, pp. 3409-3426, Dec 2016.

J. B. Rosen, “Existence and uniqueness of equilibrium points for concave
n-person games,” Econometrica: Journal of the Econometric Society, pp.
520-534, 1965.

D. Monderer and L. S. Shapley, “Potential games,” Games and economic
behavior, vol. 14, no. 1, pp. 124-143, 1996.

F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with Istm,” 1999.

R. Jain, A. Durresi, and G. Babic, “Throughput fairness index: An
explanation,” in ATM Forum contribution, vol. 99, no. 45, 1999.

L. Casals, B. Mir, R. Vidal, and C. Gomez, “Modeling the energy
performance of lorawan,” Sensors, vol. 17, no. 10, p. 2364, 2017.

Hassan Fawaz received his diploma in Telecommu-
nication Engineering from the Lebanese University
in 2015. He received his masters degree in Telecom
Networks and Security and his Ph.D. in Wireless
Communications from Saint Joseph University of
Beirut in 2016 and 2019, respectively. He is cur-
rently a PostDoc researcher at the University of Ver-
sailles, Paris-Saclay, with his work revolving around
resource allocation in LoRaWAN. His research in-
terests include full-duplex communications, IoT, and
machine learning solutions for wireless networks.

Kinda Khawam got her engineering degree from
Ecole Superieure des Ingenieurs de Beyrouth (ESIB)
in 2002, the Master’s degree in computer networks
from Telecom ParisTech (ENST), Paris, France, in
2003, and the Ph.D. from the same school in 2006.
She was a post-doctoral fellow researcher in France
Telecom, Issy-Les-Moulineau, France in 2007. Ac-
tually, she is an associate professor and researcher at
the University of Versailles in France. Her research
interests include radio resource management, model-
ing and performance evaluation of mobile networks.

Samer Lahoud received the Ph.D. degree in com-
munication networks from IMT Atlantique, Rennes,
in 2006. After his Ph.D. degree, he spent one year
at Nokia Bell Labs Europe. From 2007 to 2016,
he was with the University of Rennes 1 and with
IRISA Rennes as an Associate Professor. He is cur-
rently an Associate Professor with the Saint Joseph
University of Beirut, where he lectures computer
networking courses with the Faculty of Engineering,
Ecole Supérieure d’Ingénieurs de Beyrouth (ESIB).
His research activities focus on routing and resource

allocation algorithms for wired and wireless communication networks.

Steven Martin received his Ph.D. degree from IN-
RIA, France, in 2004. Since 2005, Steven MARTIN
is working at Paris-Saclay University. Leading the
research group “Networking and Optimization” at
LRI (the Laboratory for Computer Science at Paris-
Saclay University, joint with CNRS), his research in-
terests include quality of service, wireless networks,
network coding, ad hoc networks and real-time
scheduling. He is the author of a large number of
papers published in leading conference proceedings
and journals.

Melhem El Helou (S’08-M’15-SM’19) received
the engineer’s and master’s degrees in Telecommu-
nications and Networking Engineering from Ecole
Supérieure d’Ingénieurs de Beyrouth (ESIB), Saint
Joseph University of Beirut, Beirut, Lebanon, in
2009 and 2010, respectively and the Ph.D. degree
in Computer and Telecommunications Engineering
from IRISA Research Institute, University of Rennes
1, France and Saint Joseph University of Beirut, in
2014. He joined ESIB in September 2013 where
he is currently an Assistant Professor (fr: Maitre de

conférences). His research interests include wireless networking, Internet of
Things, and quality of service.

Authorized licensed use limited to: INRIA. Downloaded on November 13,2020 at 21:48:09 UTC from IEEE Xplore. Restrictions apply.



